Thèse soutenue

Quantification gamma des radionucléides par modélisation équivalente
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Nicolas Guillot
Direction : Gérard Montarou
Type : Thèse de doctorat
Discipline(s) : Physique Corpusculaire
Date : Soutenance le 09/03/2015
Etablissement(s) : Clermont-Ferrand 2
Ecole(s) doctorale(s) : École doctorale des sciences fondamentales (Clermont-Ferrand)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Physique Corpusculaire (Aubière, Puy-de-Dôme) - (LPC-Clermont) Laboratoire de Physique Corpusculaire de Clermont-Ferrand
Jury : Président / Présidente : Gilles Ban
Examinateurs / Examinatrices : Gérard Montarou, Nicolas Saurel, Stéphane Normand, Guilhem Douysset
Rapporteurs / Rapporteuses : Johann Collot

Résumé

FR  |  
EN

Cette thèse s’inscrit dans le domaine de la métrologie des rayonnements ionisants. Plus particulièrement dans la mesure par spectrométrie gamma des actinides contenus dans les colis et fûts de déchets. Le travail mené consiste à modéliser le coefficient d’étalonnage de la scène de mesure, élément indispensable à la quantification de l’activité (ou à la masse de radionucléides recherchée) de l’objet mesuré. La thèse comporte deux parties. La première partie traite de la modélisation de la réponse numérique spatiale et énergétique équivalente à la réponse réelle du détecteur, étape indispensable pour remonter à l’activité de l’objet. La seconde partie traite de la quantification du coefficient d’étalonnage de la scène de mesure sans hypothèse de l’opérateur. Le premier travail de thèse est la mise au point d’une méthodologie quasi automatisée d’obtention d’une réponse numérique équivalente à la réponse réelle du détecteur à un critère de convergence fixé. La réponse numérique est obtenue, sans expert, en conditions de terrain avec un critère de convergence inférieur à 5%. Le second travail est une étude de faisabilité sur la quantification de l’activité pour des colis complexes sans hypothèse de l’opérateur grâce à l’utilisation de métamodèles. Les métamodèles permettent de générer rapidement un ensemble de configurations du coefficient d’étalonnage par rapport aux données d’entrée. Les configurations sont ensuite triées pour sélectionner le coefficient d'étalonnage correspondant à la scène de mesure.