Thèse soutenue

Rôle de l'environnement cellulaire sur les canaux sensibles à l'étirement dans l'hypertension pulmonaire

FR  |  
EN
Auteur / Autrice : Thibaud Parpaite
Direction : Thomas Ducret
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire et physiopathologie
Date : Soutenance le 23/11/2015
Etablissement(s) : Bordeaux
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Talence, Gironde ; 1993-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherche cardio-thoracique de Bordeaux
Jury : Président / Présidente : Didier Dulon
Examinateurs / Examinatrices : Halima Ouadid-Ahidouch, Jean-Pierre Savineau
Rapporteurs / Rapporteuses : Philippe Gailly, Laurent Loufrani

Résumé

FR  |  
EN

Au niveau de la circulation pulmonaire, une exposition prolongée à l’hypoxie est responsable du phénomène de vasoconstriction hypoxique pulmonaire (VHP) qui favorise les échanges gazeux. Lorsque cette VHP se généralise, elle conduit au développement d'une hypertension pulmonaire de groupe 3 (HTP). Cette pathologie se caractérise par un remodelage vasculaire induisant une élévation progressive de la pression artérielle pulmonaire (> 25 mmHg au repos). Ceci conduit à une défaillance cardiaque droite et, à terme, à la mort. La VHP est responsable de l'étirement de la membrane des cellules musculaires lisses des artères pulmonaires (CMLAP) et peut ainsi activer des "Stretch-Activated Channels" tels que les TRPV (Transient Receptor Potential Vanilloid). Il a précédemment été décrit que les canaux TRPV1 et TRPV4, impliqués dans la migration et la prolifération des cellules vasculaires pulmonaires, sont surexprimés et suractivés lors de l'HTP. Cependant, ces modifications peuvent être dues à un effet direct de l’hypoxie ou indirect, conséquence d'un étirement membranaire plus important induit par la VHP. Nous avons donc étudié la contribution respective des stress hypoxique et mécanique, observés en contexte d’HTP, en utilisant des conditionnements in vitro sur des CMLAP d’animaux sains (rats et souris). Nous avons montré que l’hypoxie (1 % O2, 48 heures) induit une augmentation de la [Ca2+]i couplée à une potentialisation de la migration induite par l’activation de TRPV1 et V4. De même, un étirement cyclique (20 %, 1 Hz, 24 heures) provoque une augmentation de la [Ca2+]i et de la prolifération. Ces résultats montrent pour la première fois une action directe de l'hypoxie et du stress mécanique (étirement cyclique) sur des CMLAP.