Thèse soutenue

L'influence du transport des volatiles dans les disques sur la composition des planètes géantes

FR  |  
EN
Auteur / Autrice : Mohamad Ali Dib
Direction : Olivier MousisJean-Marc Petit
Type : Thèse de doctorat
Discipline(s) : Astrophysique
Date : Soutenance le 21/09/2015
Etablissement(s) : Besançon
Ecole(s) doctorale(s) : École doctorale Carnot-Pasteur (Besançon ; Dijon ; 2012-....)
Partenaire(s) de recherche : Laboratoire : Institut UTINAM (Univers, transport, interfaces, nanostructures, atmosphère et environnement, molécules) (Besançon) - Institut UTINAM (Univers, transport, interfaces, nanostructures, atmosphère et environnement, molécules) (Besançon)
Jury : Président / Présidente : Magali Deleuil
Examinateurs / Examinatrices : Olivier Mousis, Jean-Marc Petit, Magali Deleuil, Tristan Guillot, Anders Johansen, Emmanuel Lellouch, Jonathan Irving Lunine, Pierre Vernazza
Rapporteurs / Rapporteuses : Tristan Guillot, Anders Johansen

Résumé

FR  |  
EN

Ce manuscrit présente des travaux originaux sur la théorie de la formation des planètes.Le but fondamental est de connecter la composition chimique des planètes géantes etdes petits corps avec les processus physiques et chimiques prenant lieu dans le disqueprotoplanétaire.1. Dans le chapitre 1 j'introduis les propriétés fondamentales des disques protoplané-taires ainsi que les bases de la théorie de formation des planètes.2. Dans le chapitre 2 j'attaque le problème du rapport C/O supersolaire mesurérécemment dans WASP 12b. J'élabore un modèle qui suit la distribution et transportde l'eau et du CO gazeux et solides à travers leurs di_usion, condensation,coagulation, gaz drag et sublimation afin de quantifer la variation du rapport C/Odans le disque en fonction du temps et de la distance. Mon modèle montre que,au fur et à mesure du temps, les vapeurs vont être enlever de l'intérieur de leurlignes de glaces respectives, avec le vapeur CO enlevé beaucoup plus lentement quela vapeur d'eau. Cette effet va augmenter le rapport C/O à l'intérieur de la lignede glace de l'eau d'une valeur initiale solaire (0.55) vers une valeur au voisinagede l'unité, permettant de former des planètes géantes avec des rapports C/O _ 1,comme WASP 12b. Je fnis ce chapitre en discutant les preuves observationnellesde cette enlèvement des vapeurs à l'intérieur des lignes de glaces.3. Dans le chapitre 3 j'utilise le même modèle pour interpréter la composition chimiqued'Uranus et Neptune. Je montre comment la formation de ces deux planètessur la sur-densité de glaces prédite par mon modèle sur la ligne de glace de CO peutexpliquer pourquoi ces planètes sont à la fois riches en carbone, pauvres en azote etavec des valeurs D/H sous-cométaires.4. Dans le chapitre 4 je change de sujet vers les propriétés chimiques des météoriteschondritiques, surtout leurs rapports D/H. J'utilise un modèle de disques à 2 couches(actif et morte) avec une code d'évolution D/H pour vérifier si les profiles thermiquesnon monotone trouvés dans ces disques peuvent expliquer la large gamme des valeursD/H trouvé entre les différents familles chondritiques. Je finis ce chapitre en discutantles implications de ce modèle des disques contenant des zones mortes sur laformation de Jupiter.5. Finalement je résume nos résultats dans Conclusions & perspectives, et finis enposant des questions que j'espère voir résolus prochainement.