Développement d'un système de détection en milieux gazeux d'espèces à risque pour le contrôle environnemental (application au monoxyde de carbone et à l'hydrogène) : Composants et systèmes micro-acoustiques
Auteur / Autrice : | Meddy Vanotti |
Direction : | Sylvain Ballandras, Virginie Blondeau-Patissier |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences pour l'ingénieur |
Date : | Soutenance le 06/05/2015 |
Etablissement(s) : | Besançon |
Ecole(s) doctorale(s) : | École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; 1991-....) |
Partenaire(s) de recherche : | Laboratoire : FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) - Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies |
Jury : | Président / Présidente : Bernard Dulmet |
Examinateurs / Examinatrices : Sylvain Ballandras, Virginie Blondeau-Patissier, Bernard Dulmet, Corinne Déjous, Laurent Francis, Delphine Faye | |
Rapporteur / Rapporteuse : Corinne Déjous, Laurent Francis |
Mots clés
Mots clés contrôlés
Résumé
La détection de gaz potentiellement dangereux représente une problématique d’actualité pour la protectiondes personnes mais aussi un enjeu d’avenir pour le stockage des énergies renouvelables. Les outils desimulations développés au sein du Département Temps-Fréquence de l’Institut FEMTO-ST, associés aux outilstechnologiques proposés par la centrale MIMENTO ont permis la mise au point de capteurs SAW apportantdes réponses à ces problématiques. Ces derniers fondés sur les propriétés des ondes de Love ont ainsi permis ladétection du monoxyde de carbone dans la gamme du ppm. De même, la mesure de concentration d’hydrogènede l’ordre du pourcent a pu être réalisée par le biais de dispositifs s’appuyant sur les ondes Rayleigh. Les effortsfournis pour l’optimisation des dispositifs électro-acoustiques ont aboutis à la réalisation de lignes à retard surquartz affchant des pertes d’insertion de 16 dB. La limitation de ces pertes, généralement de l’ordre de 25 dB à30 dB sur quartz, augmente les potentialités de nos capteurs en terme d’autonomie et de fonctionnalisation desurface. La connaissance des phénomènes physiques gouvernant leur fonctionnement représente, à notre sens,la base de leur développement futur. De cette idée découle notre démarche d’identification et de compréhensionde ces derniers par le biais des différentes techniques de caractérisations et d’analyses disponible au sein denotre l’institut. Des pistes, telles que le recours à un alliage métallique pour la fonctionnalisation des surfacessensibles et la mise en œuvre d’une méthode de séparation des puces limitant les perturbations du signal directdes dispositifs électro-acoustiques, ont été explorées et ont permis d’améliorer la réponse des capteurs. Lepotentiel des composants à ondes élastiques guidée pour la détection de grandeurs chimiques en phase gazeusea pu être établi sur la base des résultats expérimentaux obtenus au cours de cette thèse. Dans la continuité decette dernière, deux projets de recherche (P-AIR et SMARTY) visant le contrôle de la qualité de l’air en milieuurbain ont d’ors et déjà été engagés.