Métaheuristiques hybrides pour la somme coloration et la coloration de bande passante
Auteur / Autrice : | Yan Jin |
Direction : | Jin-Kao Hao |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique et applications |
Date : | Soutenance le 29/05/2015 |
Etablissement(s) : | Angers |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et mathématiques (Nantes) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Etudes et de Recherche en Informatique d'Angers - Laboratoire d'Etudes et de Recherche en Informatique d'Angers / LERIA |
Jury : | Président / Présidente : Jean-Charles Billaut |
Examinateurs / Examinatrices : Jean-Philippe Hamiez | |
Rapporteur / Rapporteuse : Alexandre Caminada, Aziz Moukrim |
Mots clés
Résumé
Le problème de somme coloration minimum (MSCP) et le problème de coloration de bande passante (BCP) sont deux généralisations importantes du problème de coloration des sommets classique avec de nombreuses applications dans divers domaines, y compris la conception de circuits imprimés, la planication, l’allocation de ressource, l’affectation de fréquence dans les réseaux mobiles, etc. Les problèmes MSCP et BCP étant NP-difficiles, les heuristiques et métaheuristiques sont souvent utilisées en pratique pour obtenir des solutions de bonne qualité en un temps de calcul acceptable. Cette thèse est consacrée à des métaheuristiques hybrides pour la résolution efcace des problèmes MSCP et BCP. Pour le problème MSCP, nous présentons deux algorithmes mémétiques qui combinent l’évolution d’une population d’individus avec de la recherche locale. Pour le problème BCP, nous proposons un algorithme hybride à base d’apprentissage faisant coopérer une méthode de construction “informée” avec une procédure de recherche locale. Les algorithmes développés sont évalués sur des instances biens connues et se révèlent très compétitifs par rapport à l’état de l’art. Les principaux composants des algorithmes que nous proposons sont également analysés.