Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s'appuyant sur les courbures discrètes : application à l'étude de la cornée humaine
Auteur / Autrice : | Arnaud Polette |
Direction : | Jean-Luc Mari, Jean Meunier |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 03/12/2015 |
Etablissement(s) : | Aix-Marseille en cotutelle avec Université de Montréal. Faculté des sciences |
Ecole(s) doctorale(s) : | École doctorale Mathématiques et Informatique de Marseille (Marseille ; 1994-....) |
Jury : | Président / Présidente : Marc Daniel |
Examinateurs / Examinatrices : Jean-Luc Mari, Jean Meunier, Marc Daniel, Laurent Najman, Nicolas Passat, Mireille Garreau, Isabelle Brunette, Gerard Subsol | |
Rapporteur / Rapporteuse : Laurent Najman, Nicolas Passat |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer la connaissance de l'anatomie cornéenne, la modélisation de la cornée normale permet de détecter tout écart significatif par rapport à la normale permettant un diagnostic précoce de pathologies. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions pour une application de biométrie. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Deux méthodes sont proposées et une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage en différentes catégorie de carreaux. Ensuite un graphe d'adjacence est construit avec un nœud pour chaque carreau. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents.