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Abstract

In this thesis, we study the stabilization of some evolution equations by feedback laws. In the
first chapter we study the wave equation in R with dynamical boundary control applied on a
part of the boundary and a Dirichlet boundary condition on the remaining part. We furnish
sufficient conditions that guarantee a polynomial stability proved using a method that combines
an observability inequality for the associated undamped problem with regularity results of
the solution of the undamped problem. In addition, the optimality of the decay is shown in
some cases with the help of precise spectral results of the operator associated with the damped
problem. Then in the second chapter we consider the system on a domain of Rd, d ≥ 2. In
this case, the domain of the associated operator is not compactly embedded into the energy
space. Nevertheless, we find sufficient conditions that give the strong stability. Then, we discuss
the non uniform stability as well as the polynomial stability by two methods. The frequency
domain approach allows us to establish a polynomial decay on some domains for which the
wave equation with the standard damping is exponentially or polynomially stable. Finally, in
the third chapter we consider a general framework of second order evolution equations with
dynamical feedbacks. Under a regularity assumption we show that observability properties for
the undamped problem imply decay estimates for the damped problem. We finally illustrate our
general results by a variety of examples.

Keywords. Acoustics, stability, evolution equations, observability, Riesz basis, wave equation.
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Résumé

Dans cette thèse, nous étudions la stabilisation de certaines équations d’évolution par des lois
de rétroaction. Dans le premier chapitre nous étudions l’équation des ondes dans R avec condi-
tions aux limites dynamiques appliquées sur une partie du bord et une condition de Dirichlet
sur la partie restante. Nous fournissons des conditions suffisantes qui garantissent une stabilité
polynomiale en utilisant une méthode qui combine une inégalité d’observabilité pour le problème
non amorti associé avec des résultats de régularité du problème non amorti. L’optimalité de la
décroissance est montrée dans certains cas à l’aide des résultats spectraux précis de l’opérateur
associé. Dans le deuxième chapitre nous considérons le système sur un domaine de Rd, d ≥ 2. On
trouve des conditions suffisantes qui permettent la stabilité forte. Ensuite, nous discutons de la
stabilité non uniforme ainsi que de la stabilité polynomiale. L’approche en domaine fréquentiel
nous permet d’établir une décroissance polynomiale sur des domaines pour lesquels l’équation des
ondes avec l’amortissement standard est exponentiellement ou polynomialement stable. Dans le
troisième chapitre nous considérons un cadre général d ’équations d’évolution avec une dissipation
dynamique. Sous une hypothèse de régularité, nous montrons que les propriétés d’observabilité
pour le problème non amorti impliquent des estimations de décroissance pour le problème amorti.

Mots-clés. Stabilité, équations d’évolution, observabilité, base de Riesz, équation des ondes.
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Introduction

Control theory is the study of the process of controlling the behavior of an operator system
to achieve a certain target. Its application ranges widely from earthquake engineering and
seismology to fluid transfer, cooling water and noise reduction in cavities, vehicles, such as
pipe systems. Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where
control theory is applied. Of the most important notions in modern systems and control theory
we mention controllability, stabilizability and observability. Various types of those notions have
been introduced for abstract systems defined on Banach or Hilbert spaces and the relations
between them has been extensively explored by several authors.

Roughly speaking, the concept of controllability is defined as an ability to do whatever
we want with our system. In more technical terms, it is described as the ability to steer
our evolution system, whether described in terms of partial or ordinary differential equa-
tions, from any initial state to any desired final state in a finite time interval by means of
a suitable control (boundary control, internal control, controls localized on open subsets of
bounded sets, etc...). The definition of the same concept varies according to the framework
or the type of models on which it is applied. The three types of controllability that are
mainly defined are exact controllability, null controllability and asymptotic controllability
(see [24]). The differences between those definitions are examined for both finite dimensional
systems and infinite dimensional systems for time reversible systems (e.g. wave equation)
as well as time irreversible systems (e.g. heat equation). In general the different types
of controllability are not equivalent. The relations between these concepts were studied and
several results on this subject were obtained (see for instance the works of Micu and Zuazua [35]).

Observability is a measure for how well internal states of a system can be inferred by
knowledge of its external outputs. The duality between the controllability and observability
of systems of partial differential equations in Banach spaces has been examined in many
works such as those of Lions [30] where Hilbert uniqueness theorem HUM is explained (see
also [39]), and the works of Russell and Dolecki and Russell [22, 45, 47]. Various methods
could be used to prove observability inequalities such as Carleman estimates, microlocal
analysis and the multiplier method. For more details on the treatment of observability problems
and proving observability inequalities for linear systems, we refer the reader to [55], [52], and [30].

As for stabilizability, it is defined as the ability to find an input control that requires the state
response to approache zero as time t → ∞. Different types of stability also occurs. The details
of the notions of stability used in our thesis are explained below.

In order to introduce the main theme of our study, the used method and the obtained results
let us recall some of the fundamental definitions that are being used throughout the thesis.
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Introduction

Definition 0.1 Let X be a Banach space. A one parameter family (S(t))t≥0 of bounded linear
operators defined from X into X is a strongly continuous semigroup of bounded linear operators
on X if:

• S(0) = I,(I identity operator on X).
• S(t+ s) = S(t)S(s) for every t, s ≥ 0.
• S(t)x→ x, as t→ ∞, ∀x ∈ X.

Such a semigroup is called a C0-semigroup.

Definition 0.2 The infinitesimal generator A of the semigroup (S(t))t≥0 is defined by:

D(A) = {x ∈ X| lim
t→∞

S(t)x− x

t
exists}

and

Ax = lim
t→∞

S(t)x− x

t
, x ∈ D(A).

Definition 0.3 Let H be a Hilbert space. An operator (A, D(A)) on H satisfying

ℜ(Au, u) ≤ 0, ∀u ∈ D(A),

is said to be a dissipative operator. A maximal dissipative operator (A, D(A)) on H is a dissipative
operator for which R(λI−A) = H, for some λ > 0. A maximal dissipative operator is also called
m-dissipative operator.

Generally speaking, the first step in dealing with the study of the stability of the solution is
to rewrite our evolution system of partial differential equations as a Cauchy problem on some
appropriate Hilbert space H called the energy space

U̇ = AU, U(0) = U0. (1)

where A is an unbounded operator on H. Then we prove that A is the infinitesimal generator
of a C0-semigroup of contractions (S(t))t≥0 on H in order to deduce the existence of a solution
in a certain Hilbert space. The solution is hence of the form U(t) = S(t)U0. We mention here
Lumer-Phillips theorem (see [32]) which is applied to justify the existence and uniqueness of
solutions of some partial differential equations.

Theorem 0.4 (Lumer-Phillips theorem) Let A be a linear operator with dense domain
D(A) in a Banach space X.

(a) If A is dissipative and there exists λ0 > 0 such that R(λ0I − A) = X then A is the
infinitesimal generator of a C0-semigroup of contractions on X.

(b) If A is the infinitesimal generator of a C0-semigroup of contractions on X then R(λI−A) =
X for all λ > 0 and A is dissipative.

Consequently, A is maximal dissipative on a Hilbert space H if and only if it generates a C0-
semigroup of contractions on H and thus the existence of the solution is justified by the following
corollary which follows from Lumer-Phillips theorem.

iv
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Corollary 0.5 Let H be a Hilbert space and let A be a linear operator defined from D(A) ⊂ H
into H. If A is maximal dissipative then the initial value problem

{
du
dt (t) = Au(t), t > 0
u(0) = u0

has a unique solution u ∈ C([0,+∞),H), for each initial datum u0 ∈ H. Moreover, if u0 ∈ D(A),
then

u ∈ C([0,+∞), D(A)) ∩ C1([0,+∞),H).

After proving the well posedness of the systems introduced in the chapters of the thesis, we
aim to discuss the type of stability of the solution of the systems formulated as (1). We in-
troduce here the notions of stability that we encounter in this work (see [15] and [14] for instance).

Assume that A is a generator of a strongly continuous semigroup of contractions on a Hilbert
space H. We say that the semigroup (S(t))t≥0 generated by A is
• Strongly (asymptotically) stable if for all U0 ∈ H

‖S(t)U0‖H → 0.

• Exponentially stable if there exist two positive constants C, ω such that

‖S(t)U0‖H ≤ Ce−ωt‖U0‖H, ∀t > 0, ∀U0 ∈ H.

• Polynomially stable if there exist constants α, β, C > 0 such that

‖S(t)(d−A)−α‖ ≤ Ct−β , t > 0,

for some d > 0.
Clearly the definitions of the different kinds of stability could be introduced for the energy of
the solution of (1) defined by E(t) = 1

2‖U(t)‖2.

In order to show the strong stability of U(t) = S(t)U0 we study the spectrum of the operator
A of (1) and we show that the only pure imaginary elements of its spectrum are countable
and belong exclusively to its essential spectrum. The asymptotic stability is thus deduced by
Arendt-Batty Theorem (see [10] and Theorem 1.3.1 in the first chapter). The discussion of
the type of stability achieved by our systems is detailed later and is based in the first chapter
on the analysis of the spectrum of the operator of a conservative operator associated with the
dissipative operator in order to obtain an observability inequality using Ingham’s inequality
(see [11]). While in the second chapter we introduce, as in [38], a Lyapunov functional or a
resolvent method from [19] (see also [15]) to find appropriate estimates on the energy. We
moreover use Huang-Prüss Theorem (see [23, 26, 43]) and a result of [44] (see also [50]) to prove
the nonuniform stability in certain cases.

Let us now briefly explain the contents of our thesis. This thesis is divided into three chapters.
The aim of the first and second chapter is to study the stability of the wave equation defined on
an open connected bounded set Ω of Rd, d ≥ 1 with a boundary ∂Ω = Γ assumed to be divided
into two disjoint parts Γ0 and Γ1 , where Γ0 is assumed to be closed with a nonempty interior and
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Γ1 relatively open in Γ which could be possibly empty for d > 1. A clamped boundary condition
is assumed to be satisfied on a part Γ1 of the boundary and a dynamic boundary condition on
the second part Γ0. More precisely, we consider the system defined by





ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
y(x, t) = 0 , x ∈ Γ1, t > 0,
∂y
∂ν (x, t) = (δ(x, t), C) , x ∈ Γ0, t > 0,
δt(x, t) = Bδ(x, t)− Cyt(x, t) , x ∈ Γ0, t > 0,

(2)

with the following initial conditions:
{
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,
δ(x, 0) = δ0(x), x ∈ Γ0,

(3)

where (·, ·) an inner product on Cn with n ≥ 1, B ∈ Mn(C), C ∈ Cn if d = 1 and
C ∈ C0,1(Γ0,C

n) and B ∈ C(Γ0,Mn(C)) if d > 1.

The damping of the system is made via the indirect damping mechanism on the part Γ0 that
involves a first order differential equation in the variable δ. The notion of indirect damping
mechanisms has been introduced by Russell in [49] and retains the attention of many authors
(see for instance [5, 6, 48]). In addition, different models from acoustic theory enter in this
framework.

The case n = 1 was considered in [53] (d = 1) and in [50] (d ≥ 2) where a polynomial
decay in 1

t was proved for initial data in the domain of the associated operator by using the
multiplier method, leading to strong geometrical assumption on Γ0. In the case n ≥ 2, the third
and fourth equations in (2) are general versions of the so-called acoustic boundary conditions,
introduced for n = 2 in [17]. Acoustic boundary conditions arise in many physical applications,
in particular they occur in theoretical acoustics, where a part of the boundary is not rigid but
subject to small oscillations, see [16, 18, 31, 37, 38] and the references therein for more details.
Absorbing boundary conditions like in [13] are stronger and lead to exponential decay of the
energy, but they do not enter into our framework.

The stability of the wave equation with acoustic boundary condition was first studied by Beale
in [16] where he discusses the strong stability of the system,





φtt(x, t)− c2∆φ(x, t) = 0, x ∈ Ω, t > 0

ηt(x, t)− ∂φ
∂ν (x, t) = 0, x ∈ Γ0, t > 0

m(x)ηtt(x, t) + d(x)ηt(x, t) + k(x)η(x, t) + ρφt(x, t) = 0, x ∈ Γ0 t > 0

(4)

with m, d, k are positive sufficiently smooth functions defined on Γ0 . In this case, Γ1 = ∅ and
system (4) can be formulated for c = 1 as (2)by taking

n = 2, δ =

(
η
ηt

)
, B =

(
0 1

− k
m − d

m

)
, C =

(
0
ρ
m

)
.

The third condition of (4) is the acoustic boundary condition introduced in [17]. In [38], Rivera
and Qin studied the stability of (2) on Ω ⊂ R3 with boundary

∂Ω = Γ0 ∪ Γ1, Γ̄0 ∩ Γ̄1 = ∅, and meas Γ1 6= 0,
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assuming moreover the existence of a point x0 ∈ R3 such that

Γ1 = {x ∈ Γ|(x− x0).ν ≤ 0}, Γ0 = {x ∈ Γ|(x− x0).ν ≥ a > 0},

for some constant a > 0. By introducing an appropriate Lyapunov function, the authors prove
that the energy decays polynomially with a decay rate of 1

t . In [31], the authors consider
the wave equation on Ω ⊂ R2 with acoustic boundary condition on one part of the bound-
ary but replacing the Dirichlet boundary condition on Γ1 by a Neumann boundary condition.
Again the authors obtain a polynomial decay rate depending on the regularity of the initial data.

In the first chapter we study the stability of (2) for Ω = (0, 1) with Γ1 = 0,Γ0 = 1. Then,
system (2) is given by





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t)− (δ(t), C)Cn = 0, t > 0,
δt(t)−Bδ(t) + Cyt(1, t) = 0, t > 0,

(5)

Using the compact perturbation result of Russell [46], the dissipative system (5) is not uniformly
stable (see section 1.4.1 of the first chapter and [37, Rk 2]). Hence we are interested in proving
a weaker decay of the energy. More precisely we will give sufficient conditions on B and C that
yield the polynomial decay of the energy of our system (for initial data in the domain of the
associated operator). Contrary to [53] and [38] where a multiplier method is used, we here use
a technique, inspired from [8, 34, 41], that consists of combining an observability inequality for
the associated undamped problem obtained via sharp spectral results with regularity results of
the solution of the undamped problem with a specific right-hand side. Moreover, using a careful
spectral analysis of the operator associated with (5) we show in some particular situations that
our decay rate is optimal.

In the second chapter we study the stability of (2) for Ω ⊂ Rd with d > 1. We further assume
that the boundary ∂Ω = Γ is Lipschitz and that that Γ0∩ Γ̄1 is of class C1 in the sense explained
in the second chapter. In a first step we try to find sufficient conditions that guarantee the strong
stability of the system. Here as the domain of the associated operator is not compactly embedded
into the natural energy space, we can expect that its spectrum is not only made up of eigenvalues.
We prove such a result in our general setting but since Dirichlet boundary conditions are imposed
on a part of the boundary, we were not able to use the single-layer potential technique of [16] and
instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C as in
the one-dimensional case allow us to show that the associated operator has no eigenvalues on the
imaginary axis, hence we can obtain the strong stability by using Arendt-Batty theorem (see [10]
and Theorem 1.3.1). In dimension larger than 2, we can not apply the compact perturbation
result of Russell [46] (see also section 1.4.1 of the first chapter) in order to prove the non uniform
stability of (2). Nevertheless by using the spectral properties of the Laplace operator with specific
Robin boundary conditions on Γ0, we will show that the resolvent of the associated operator is
not uniformly bounded on the imaginary axis and by the frequency domain approach [23,26,43],
we will conclude that our system is not uniformly stable. Hence we are interested in proving a
weaker decay of the energy. More precisely we will give sufficient conditions on Γ0, B and C
that yield the polynomial decay of the energy of our system (for initial data in the domain of
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Introduction

the associated operator). A first approach is to use a multiplier method like in [38, 50, 53] but
this approach requires a quite strong geometrical assumption on Γ0. Hence we alternatively use
the frequency domain approach from [19]. In that case, we prove some appropriate bound for
the resolvent on the imaginary axis by using the exponential or polynomial decay of the wave
equation with the standard damping

∂y

∂ν
(x, t) = −yt on Γ0,

and an assumption on the behavior of ℜ((isI − B)−1C,C) for all real number s with modulus
large enough. This leads to quite weaker geometrical assumption on Γ0 due to the results
from [12, §5] or [28, 29] for instance. In particular in this second approach as Γ1 can be empty,
we significantly improve results from [16] and [38].

In the third chapter, we study the stability of linear control problems coming from elasticity
which can be written as





x′′(t) +Ax(t) +Bu(t) = 0, t ∈ [0,+∞)

u′(t)− Ĉu(t)−B∗x′(t) = 0, t ∈ [0,+∞)
x(0) = x0, x

′(0) = y0, u(0) = u0,

(6)

where X and U are two complex Hilbert spaces, x : [0,+∞) → X is the state of the system,
u ∈ L2(0, T ;U) is the input function, A is an unbounded positive self-adjoint operator on X,
B ∈ L(U,D(A

1
2 )′) and Ĉ is a maximal dissipative operator on U . The second equation of the

considered system describes a dynamic control in some models. Some systems that can be
covered by the formulation (6) are for example the hybrid systems. System (2) considered in
the first chapter can be viewed as an application as well.

In this chapter we give sufficient conditions leading to the uniform or non uniform stability
of the solutions of the corresponding closed loop system. We first justify the well-posedness
of the problem then we write Ĉ as a sum of a skew-adjoint operator −C and a self-adjoint
operator −DD∗ and we prove under a regularity assumption that the observability properties,
described by assumption (O), of the undamped problem corresponding to replacing Ĉ by
−C in (6) imply decay estimates for the damped problem. We present in the last section
of this chapter illustrative examples as applications of the general setting where we obtain
polynomial or exponential energy decay rates. Finally, we note that we use a variety of methods
in verifying the observability assumption as well as a regularity assumption when Ĉ is unbounded.

Note that the chapters of this thesis correspond to articles which have been published [2] or
submitted [1,3,4]. Thus we have kept the general structure of the articles but just regrouping [3]
and [4] in one chapter.

Let us finish this introduction with some notation used in the remainder of the thesis: the
notation A . B and A ∼ B means the existence of positive constants C1 and C2, which are
independent of A and B such that A ≤ C2B and C1B ≤ A ≤ C2B.

viii



1 Polynomial decay rate for a wave

equation with general acoustic boundary

feedback laws

1.1 Introduction

We consider the following one-dimensional evolution problem with a Dirichlet boundary con-
dition at one end and a dynamical control at the other one, described as follows:





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t) + (η(t), C)Cn = 0, t > 0,
ηt(t)−Bη(t)− Cyt(1, t) = 0, t > 0,

(1.1)

with the following initial conditions:
{
y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 < x < 1,
η(0) = η0,

(1.2)

where B ∈ Mn(C), C ∈ Cn are given, y represents the transverse displacement of the vibrating
string and η denotes the dynamical control variable. Define

V = {y ∈ H1(0, 1) : y(0) = 0},

endowed with the following inner product (y, z)V =
∫ 1
0 yxz̄xdx, and the energy space

H = V × L2(0, 1)× Cn,

endowed with the following inner product,

((y, z, η), (y1, z1, η1))H =

∫ 1

0
yxȳ1xdx+

∫ 1

0
zz̄1dx+ (η, η1)Cn ,

with (·, ·)Cn an inner product on Cn to be well determined. Denote by M the Hermitian positive
definite matrix associated with this inner product. For shortness we sometimes use the notation
(·, ·) to denote (·, ·)Cn throughout the rest of the work.

The damping of the system is made via the indirect damping mechanism at the extremity 1
that involves a first order differential equation in η. Using the compact perturbation result of
Russell [46], the dissipative system (1.1) is not uniformly stable (see section 1.4.1 and [37, Rk
2]). Hence we are interested in proving a weaker decay of the energy. More precisely we will give
sufficient conditions on B and C that yield the polynomial decay of the energy of our system

1



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

(for initial data in the domain of the associated operator). Contrary to [53] and [38] where a
multiplier method is used, we here use a technique, inspired from [8, 34, 41], that consists of
combining an observability inequality for the associated undamped problem obtained via sharp
spectral results with regularity results of the solution of the undamped problem with a specific
right-hand side. Moreover, using a careful spectral analysis of the operator associated with (1.1)
we show in some particular situations that our decay rate is optimal.

The chapter is organized as follows. The second section deals with the well-posedness of the
problem obtained by using semigroup theory. Section 1.3 is devoted to the analysis of the strong
stability of the system. In section 1.4, we perform the spectral analysis of the operator associated
with the conservative system and deduce the polynomial stability of the dissipative system. The
optimality of the decay is considered in section 1.5. Finally some particular examples illustrating
our general framework are presented in section 1.6.

1.2 Well-posedness results

In order to solve system (1.1) we use a reduction order argument. Define the linear operator
A by

D(A) = {(y, z, η) ∈ H2(0, 1) ∩ V × V × Cn : yx(1) = −(η, C)Cn},
and

A



y
z
η


 =




z
yxx

Bη + Cz(1)


 , ∀



y
z
η


 ∈ D(A).

We reformulate our problem into a Cauchy problem given by

u̇ = Au, u(0) = u0 (1.3)

with u = (y, z, η)T and u0 = (y0, y1, η0)
T . We proceed by proving that A is m-dissipative. The

existence of a unique solution of problem (1.3) follows from Lumer-Phillips Theorem (see for
instance [42]).

Proposition 1.2.1 Suppose that

ℜ(Bη, η)Cn ≤ 0, ∀η ∈ Cn. (1.4)

Then the operator A is m-dissipative, thus A generates a C0-semigroup of contractions on H.

Proof. Let



y
z
η


 ∈ D(A), we have:


A



y
z
η


 ,



y
z
η






H

=

∫ 1

0
zxȳxdx+

∫ 1

0
yxxz̄dx+ (Bη + Cz(1), η)Cn

= 2iℑ
(∫ 1

0
zxȳxdx+ z(1)(C, η)Cn

)
+ (Bη, η)Cn .

2



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Hence ℜ(AU,U) = ℜ(Bη, η)Cn ≤ 0, and thus A is dissipative.
We would like to show that there exists λ > 0 such that λI−A is surjective. Let λ > 0 be given.
Clearly, we have λ 6∈ σ(B). For (y1, z1, η1) ∈ H, we look for (y, z, η) ∈ D(A) such that

(λI −A)



y
z
η


 =



y1
z1
η1


 ,

i.e. we are searching for y ∈ H2 ∩ V, η ∈ Cn satisfying

yx(1) = −(η, C), η = (λI −B)−1 (η1 + C (λy(1)− y1(1))) ,

and the following strong problem:

λ2y − yxx = z1 + λy1 = f1.

We now define the associated weak problem and we then prove that it admits a unique solution
using Lax-Milgram lemma. We state the weak problem as follows, find y ∈ V satisfying

a(y, ϕ) = L(ϕ), ∀ϕ ∈ V (1.5)

where the conjugates of a and L are given by

ā(y, ϕ) =

∫ 1

0
λ2yϕ̄dx+

∫ 1

0
yxϕ̄xdx+ ((λI −B)−1C,C)Cnλy(1)ϕ̄(1),

L̄(ϕ) =

∫ 1

0
f1ϕ̄dx+

(
(λI −B)−1(Cy1(1)− η1), C

)
Cn ϕ̄(1).

Clearly, V is a Hilbert space, L is a linear continuous functional defined on V and a is a sesquilin-
ear continuous form on V . Finally, a is coercive since |a(y, y)| ≥ ℜa(y, y). Indeed,

a(y, y) = λ2
∫ 1

0
|y|2dx+

∫ 1

0
|yx|2dx+ ((λI −B)−1C,C)λ|y(1)|2,

and ℜ(Bη, η) ≤ 0 implies ℜ((λI −B)−1C,C) ≥ 0, since

ℜ
(
(λI −B)−1C,C

)
= ℜ (u, (λI −B)u)

= λ‖u‖2 −ℜ(u,Bu) ≥ 0,

with u = (λI −B)−1C. Hence ℜa(y, y) & ‖y‖2V , which implies that a is coercive.
Applying Lax-Milgram Lemma, there exists a unique y ∈ V solution of equation (1.5).
In particular, setting ϕ ∈ D(0, 1) in (1.5), we get

λ2y − yxx = f1, in D′(0, 1). (1.6)

Due to the fact that y ∈ V we get yxx ∈ L2(0, 1), and we deduce that y ∈ H2(0, 1). Multiplying
both sides of the conjugate of equality (1.6) by a φ ∈ V , integrating by parts on (0, 1), and
comparing with (1.5) we get

yx(1) =
(
(λI −B)−1 (Cy1(1)− Cλy(1)− η1) , C

)
.

Defining η = (λI − B)−1(η1 − Cy1(1) + Cλy(1)), we get yx(1) = −(η, C) and by choosing
z = λy − y1 we deduce the surjectivity of λI −A. Finally, we conclude that λI −A is bijective,
for all λ > 0.

3



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Remark 1.2.2 If 0 is not an eigenvalue of B, then A is bijective (see Proposition 1.3.2 below)
and A−1 is bounded.

Remark 1.2.3 If ℜ(Bη, η) ≤ 0, then ℜ
(
(izI −B)−1C,C

)
≥ 0 . Indeed,

ℜ((izI −B)−1C,C) = ℜ(u, (izI −B)u) = ℜ(u, izu)−ℜ(u,Bu)
= ℜ(−iz‖u‖2)−ℜ(u,Bu) = −ℜ(u,Bu) ≥ 0.

Since A is m-dissipative, then Lumer-Phillips theorem allows us to state the following corollary.

Corollary 1.2.4 (i) For an initial datum u0 ∈ H there exists a unique solution u ∈
C([0,+∞),H) to problem (1.3). Moreover, if u0 ∈ D(A), then

u ∈ C([0,+∞), D(A)) ∩ C1([0,+∞),H).

(ii) For each u0 ∈ D(A), the energy E(t) of the solution u of problem (1.3), defined by

E(t) =
1

2
‖u(t)‖2H,

satisfies
d

dt
E(t) = ℜ(Bη, η),

therefore the energy is non-increasing.

Proof. (i) is a direct consequence of Lumer-Phillips theorem.
(ii) holds simply since

dE(t)

dt
= ℜ(du(t)

dt
, u(t)) = ℜ(Au, u).

1.3 Asymptotic stability

Since A is m-dissipative and D(A) is compactly embedded in H, then for all λ > 0 the operator
(λI − A)−1 is compact. Thus A has a compact resolvent, which implies that the spectrum of
σ(A) is equal to its discrete spectrum σd(A). To show that (T (t))t>0 generated by A is stable
we are going to use the following theorem due to Arendt and Batty (see [10]).

Theorem 1.3.1 (Arendt-Batty) Let X be a reflexive Banach space. Assume that T is bounded
and no eigenvalues of A lies on the imaginary axis. If σ(A) ∩ iR is countable, then T is stable.

Indeed, in our case A has a compact resolvent, which implies that σ(A) is purely formed of
eigenvalues and the conditions of Theorem 1.3.1 reduce to σd(A) ∩ iR = φ.

In order to prove the asymptotic stability of the energy of system (1.1) under some appropriate
assumptions, we characterize in the subsequent section the eigenvalues of A.

4



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

1.3.1 Characteristic equation

Proposition 1.3.2 A is invertible if and only if B is invertible.

Proof. Let



y
z
η


 ∈ D(A) be a solution of

A



y
z
η


 =



0
0
0


 .

That is, 


z
yxx

Bη + Cz(1)


 =



0
0
0


 ,

which is equivalent to

yxx = 0, z = 0, y(0) = 0, Bη = 0, yx(1) + (η, C) = 0.

We write equivalently
y = cx, z = 0, Bη = 0, c+ (η, C) = 0,

for some c ∈ C.
Suppose 0 6∈ σ(B). Then η = 0, which implies c = 0, hence 0 6∈ σ(A).
Suppose 0 ∈ σ(B). Choose η an eigenvector of B, then (−(η, C)x, 0, η)T is an eigenvector of A
associated with 0. Thus 0 ∈ σ(A).

Proposition 1.3.3 A complex number λ is an eigenvalue of A if and only if it satisfies the
characteristic equation given by:

CA(λ) = det

(
λI −B −C sinhλ
C∗M coshλ

)
= 0.

Proof. Let λ be a non zero eigenvalue of A. Let



y
z
η


 ∈ D(A) be the associated eigenvector.

Then, we have 

y
z
η


 ∈ D(A), A



y
z
η


 = λ



y
z
η


 ,

equivalently, 

y
z
η


 ∈ D(A),




z
yxx

Bη + Cz(1)


 = λ



y
z
η


 .

Thus z = λy, yxx = λz,Bη + Cz(1) = λη, y(0) = 0, z(0) = 0, yx(1) + (η, C) = 0.
We get

yxx = λ2y, y(0) = 0, z = λy, (λI −B)η − Cλy(1) = 0, C∗Mη + yx(1) = 0. (1.7)

5
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Then there exists α ∈ C such that

y(x) = α sinh(λx), z(x) = αλ sinh(λx), (λI −B)η − Cλ sinh(λ)α = 0, C∗Mη + λ cosh(λ)α = 0.
(1.8)

Hence to find λ ∈ σ(A) is equivalent to find a nonzero couple (η, α) solution of

(
λI −B −Cλ sinhλ
C∗M λ coshλ

)(
η
α

)
=

(
0
0

)
.

Consequently, λ ∈ σ(A) if and only if CA(λ) = det

(
λI −B −C sinhλ
C∗M coshλ

)
= 0.

Remark that CA(0) = det

(
−B 0
C∗M 1

)
= det(−B). Thus 0 is a root of CA if and only if 0 is an

eigenvalue of B, i.e. an eigenvalue of A by Proposition 1.3.2 .

Proposition 1.3.4 Let λ 6∈ σ(B) be nonzero. Then λ ∈ σ(A) if and only if λ satisfies

coshλ+
(
(λI −B)−1C,C

)
Cn sinhλ = 0, (1.9)

or equivalently
det(λI −B) coshλ+ (adj(λI −B)C,C)Cn sinhλ = 0, (1.10)

where adj(λI −B) denotes the adjugate matrix of λI −B.

Proof. Let (y, z, η)⊤ ∈ D(A) be the associated eigenvector. Using equation (1.7) there exists
α ∈ C such that y, z and η satisfy (1.8).
Since (λI − B) is invertible, then supposing α = 0 implies that (y, z, η) = (0, 0, 0). We deduce
that α 6= 0 and as λ 6∈ σ(B) we can write

η = (λI −B)−1Cαλ sinhλ,

thus λ satisfies
λ coshλ+ ((λI −B)−1C,C)Cnλ sinhλ = 0.

Hence every nonzero λ 6∈ σ(B) satisfies the characteristic equation given by (1.9). Noting that
(λI − B)−1 = 1

det(λI−B)adj(λI − B), we may write our characteristic equation satisfied by any
nonzero λ ∈ σ(A)\σ(B) as in equation (1.10).

Up to now we obtained the characteristic equation satisfied by all λ ∈ σ(A), and gave a precise
characterization of λ ∈ σ(A) in case it is not an eigenvalue of B. The next section is dedicated
to the discussion of the conditions that allows to obtain asymptotic stability of the C0-semigroup
generated by A.

1.3.2 Conditions of stability

Proposition 1.3.5 Let z ∈ R∗. Then iz 6∈ σ(B) is an eigenvalue of A if and only if

ℜ((izI −B)−1C,C)Cn = 0 and cos z −ℑ((izI −B)−1C,C)Cn sin z = 0. (1.11)

6



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Proof. Indeed, by (1.9), we have

iz ∈ σ(A) \ σ(B) ⇔ cos z + i sin z
(
ℜ
(
(izI −B)−1C,C

)
Cn + iℑ

(
(izI −B)−1C,C

)
Cn

)
= 0,

which is equivalent to
{

ℜ((izI −B)−1C,C)Cn sin z = 0,
cos z −ℑ

(
(izI −B)−1C,C

)
Cn sin z = 0.

(1.12)

If sin z = 0, then cos z 6= 0 and system (1.12) has no solution. We deduce that z is a solution of
(1.12) if and only if (1.11) holds.

Proposition 1.3.6 For any integer k, ikπ is an eigenvalue of A if and only if ikπ is an eigen-
value of B.

Proof. Being an eigenvalue of A, ikπ satisfies CA(ikπ) = 0, i.e.

± det(ikπI −B) = det

(
ikπI −B 0
C∗M (−1)k

)
= 0,

that is ikπ ∈ σ(B).

Proposition 1.3.7 Let λ ∈ σ(B) such that λ 6= ikπ for every k ∈ Z. Suppose that all nonzero
η ∈ ker(λI −B) are not orthogonal to C. Then C 6∈ ker(λ̄I −B∗)⊥ implies that λ 6∈ σ(A).

Proof. Indeed, λ ∈ σ(A) implies the existence of (α, η) 6= (0, 0) satisfying

(λI −B)η = Cλ sinhλα and αλ coshλ+ (η, C) = 0.

If α = 0 then 0 6= η ∈ ker(λI −B) and (η, C) = 0. Hence C is orthogonal to η.
If α 6= 0 then C ∈ Im(λI −B) = ker(λ̄I −B∗)⊥.

Proposition 1.3.8 The following assumptions are sufficient to obtain stability of the C0-
semigroup associated with A

(A1) ℜ((izI −B)−1C,C) > 0, ∀iz 6∈ σ(B), z ∈ R∗.
(A2) ikπ 6∈ σ(B), ∀k ∈ Z.
(A3) ∀iz ∈ σ(B), C 6∈ ker(izI +B∗)⊥ and (η, C) 6= 0 for all nonzero η ∈ ker(izI −B).

Proof. The proof follows directly from Proposition 1.3.5, Proposition 1.3.6, Proposition 1.3.7
and the theorem of Arendt-Batty.

Definition 1.3.9 A matrix B is said to be Hurwitz if all its eigenvalues have negative real parts.

Corollary 1.3.10 Assume B is Hurwitz and Condition (A1) holds, then the C0-semigroup gen-
erated by A is strongly stable.

Decompose B into a sum of a skew-adjoint matrix B0 = B−B∗

2 and a self-adjoint matrix
R = B+B∗

2 , where B∗ is the adjoint matrix of B with respect to the inner product (·, ·)Cn .

7
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1.4 Polynomial stability

Let us first define the conservative system associated with system (1.1) by





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t) + (η(t), C)Cn = 0, t > 0,
ηt(t)−B0η(t)− Cyt(1, t) = 0, t > 0,

(1.13)

with the initial conditions given by (1.2). Let A be defined by D(A) = D(A) and

A



y
z
η


 =




z
yxx

B0η + Cz(1)


 , ∀



y
z
η


 ∈ D(A).

1.4.1 Non uniform stability of A
We present in the subsequent lemma the tool to be used in proving the non uniformity of the

C0-semigroup generated by A (See for instance [44]).

Lemma 1.4.1 Let A = −A∗ be the infinitesimal generator of a C0 group, and let B be a compact
operator in the Hilbert space H. Then the group (T (t))t>0, generated by the operator −(A+B),
has no uniform energy decay rate for t > 0.

By replacing B by B0 in the proof of Proposition 1.2.1 we deduce that for λ > 0, λI − A is
surjective. Also, using the same method as in the proof of Proposition 1.2.1 we can easily show
that λI +A is surjective. Accordingly, the subsequent remark follows.

Remark 1.4.2 Since B0 is skew-adjoint, it follows that A is skew-symmetric. Now, as λI − A
and µI + A are onto for some λ > 0, µ > 0, A is skew-adjoint. According to Stone’s theorem
(see Theorem 10.8 in Chapter 1 of [42]), A generates a unitary group.

Proposition 1.4.3 The C0-semigroup associated with A is not uniformly stable.

Proof. We have (A − A)



y
z
η


 =




0
0
Rη


 , which is compact since it is a finite rank operator.

The required result follows from Lemma 1.4.1.

Next, we discuss the asymptotic behavior of the eigenvalues and eigenvectors of A. Later,
we establish some inequalities corresponding to the solutions of system (1.1) and those of the
conservative one (1.13) to deduce finally the polynomial stability.

1.4.2 Asymptotic behavior of the spectrum of A

Denote by P : Cn → W the projection map from Cn onto W , with W = (kerR)⊥. We recall
that P is linear continuous map satisfying P 2 = P and that any η ∈ Cn = kerR ⊕W can be
written in a unique way as η = Pη + η̃, where Pη ∈W and η̃ ∈ kerR.

8
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Remark 1.4.4 Clearly, (−Rη, η) 1
2 is a norm on W . As W is a finite dimensional space, it

follows from the property of the equivalence of norms on finite dimensional spaces that there
exists α > 0 such that (−Rη, η) ≥ α‖Pη‖22, for all η ∈ Cn, where ‖ · ‖2 is the Euclidean norm.

As ℜ(Au, u) = 0, for all u ∈ D(A), then all the eigenvalues of A are purely imaginary. Denote by
λ = iµ the eigenvalues of A, by φµ = (yµ, zµ, ηµ) the associated eigenvectors. Due to Proposition
1.3.4, an associated eigenvector with λ = iµ, where |µ| > ‖B0‖, is given by

φµ =
1√
N(µ)

(i sin(µx),−µ sin(µx),−(iµI −B0)
−1Cµ sinµ),

with N(µ) the factor of normalization given by

N(µ) = µ2 + ‖(iµI −B0)
−1C‖2Cnµ2 sin2(µ)

= µ2 + sin2(µ)‖(I − B0

iµ
)−1C‖2Cn .

Assume that there exists p ∈ N ∪ {0} such that P (Bp
0C) 6= 0. Let

m = min{p ∈ N ∪ {0} : P (Bp
0C) 6= 0}. (1.14)

Proposition 1.4.5 As k → ∞, the asymptotic expansions of µk (with ℑ(µk) ∈ (kπ, (k + 1)π)),
N(µk) and Pηµk

are given by

µk = kπ +
π

2
+

‖C‖2
kπ

− ‖C‖2
2k2π

+
(B0C,C)

ik2π2
+ o

(
1

k2

)
,

N(µk) = k2π2 + o(k2),

Pηµk
= (−1)k

1

im−1

(
P (Bm

0 C)

km+1πm+1
+ o

(
1

km+1

))
.

Moreover, the expansions of µ−k (with ℑ(µ−k) ∈ (−(k + 1)π,−kπ)) and Pηµ−k
are

µ−k = −kπ − π

2
− ‖C‖2

kπ
+

‖C‖2
2k2π

+
(B0C,C)

ik2π2
+ o

(
1

k2

)
,

Pηµ−k
= (−1)k−m+1 1

im−1

(
P (Bm

0 C)

km+1πm+1
+ o

(
1

km+1

))
.

Proof. For µ ∈ C with |µ| large enough, namely |µ| > ‖B0‖ and using Proposition 1.3.4 we have
that iµ is an eigenvalue of A if and only if µ satisfies

cosµ+
(
(iµI −B0)

−1C,C
)
Cn i sinµ = 0,

which implies
cosµ = −i

(
(iµI −B0)

−1C,C
)
Cn sinµ.

For µ = kπ the above expression is not satisfied, so µ 6= kπ, dividing by sinµ, we obtain:

cotµ = g(µ),

9



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

with

g(µ) = − 1

µ

((
I − B0

iµ

)−1

C,C

)

Cn

.

Since |µ| > ‖B0‖, I − B0
iµ is invertible and

(
I − B0

iµ

)−1
=

∞∑

n=0

(
B0

iµ

)n

.

By the continuity of the mapping u→ (u,C)(u ∈ Cn), we get

g(µ) = − 1

µ

( ∞∑

n=0

(
B0

iµ

)n

C,C

)

Cn

=
∞∑

n=0

( −B0
n

inµn+1C,C

)

Cn

.

We proceed by studying the variation of g. Indeed, the derivative of g is given by

g′(µ) =
∞∑

n=0

n+ 1

µn+2

(Bn
0C,C)

in
.

Now, let us discuss the number of roots of g between kπ and (k + 1)π. For |µ| large enough, we
have

g(µ) =
−‖C‖2
µ

+ o

(
1

µ

)
, and g′(µ) =

‖C‖2
µ2

+ o

(
1

µ2

)

which implies that g is negative and increasing for such values of µ, thus we deduce that for k
large enough there exists a unique µk between kπ and (k + 1)π solution of g(µ) = cot(µ) .
Hence the form of an eigenvalue between ikπ and i(k + 1)π, is iµk with µk = kπ + π

2 + ε. Since
cot(µk) = g(µk), then π

2 + ε = cot−1(g(µk)), but g(µ) → 0 as µ → ∞, so ε = o(1). To find the
asymptotic expansion of ε, we consider the inverse cotangent of g(µ). Indeed, we have:

cot−1(g(µk)) =
π

2
−

∞∑

k=0

(−1)k(g(µk))
2k+1

2k + 1

=
π

2
− g(µk) + o

(
(g(µk))

2
)
.

But,

g(µk) = −‖C‖2
µk

− (B0C,C)

iµ2k
+ o

(
1

µ2k

)
,

1

µk
=

1

kπ
− 1

2k2π
+ o

(
1

k2

)
,

1

µ2k
=

1

k2π2
+ o

(
1

k2

)
,

thus

g(µk) = −‖C‖2
kπ

+
‖C‖2
2k2π

− (B0C,C)

ik2π2
+ o

(
1

k2

)
.

We finally get the asymptotic expansion of µk ∈ (kπ, (k + 1)π),

µk = kπ +
π

2
+

‖C‖2
kπ

− ‖C‖2
2k2π

+
(B0C,C)

ik2π2
+ o

(
1

k2

)
.

10



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

As sin(µk) = sin(kπ + π
2 + o(1)) = (−1)k + o(1) and ‖C +

∞∑

n=1

B0
n

inµnk
C‖2 is bounded, we get

N(µk) = k2π2 + o(k2).

The expansion of ηµk
is given by

ηµk
= i

sinµk√
N(µk)

(
I − B0

iµk

)−1

C

= (−1)ki

(
1

kπ
+ o

(
1

k

)) ∞∑

n=0

Bn
0C

inµnk
.

Taking the projection P of ηµk
on W , we get

Pηµk
= (−1)k

1

im−1

(
P (Bm

0 C)

km+1πm+1
+ o

(
1

km+1

))
.

We proceed by the same way to prove the existence of a unique µ−k ∈ [−(k + 1)π,−kπ] and
obtain its asymptotic expansion.

1.4.3 An a priori estimate

Let u1 be the solution of the conservative problem, i.e. u1 satisfies
{

d
dtu1(t) = Au1(t), t > 0,
u1(0) = u0.

(1.15)

Let u be a solution of the original system associated with the coupled PDE-ODE system
{

d
dtu(t) = Au(t), t > 0,
u(0) = u0,

(1.16)

where D(A) = D(A) was introduced before.
Setting u2 = u− u1, u2 fulfills the following non homogeneous initial value problem

{
d
dtu2(t) = Au2(t) + f(t), t > 0,
u2(0) = 0,

(1.17)

where f = (0, 0, Rη) with η the last component of u.

Definition 1.4.6 The function u2 ∈ C([0, T ];H) given by: u2(t) =
∫ t
0 e

A(t−s)f(s)ds is the mild
solution of the initial value problem (1.17) on [0, T ].

Back to our problem, we have d
dtE(t) = ℜ(Bη, η) = (Rη, η) ≤ 0, then integrating between 0

and any T > 0, we get

E(T )− E(0) =

∫ T

0
(Rη, η)dt.

We claim that there exists c > 0 depending on T such that c
∫ T
0 (−Rη, η)dt ≥

∫ T
0 (−Rη1, η1)dt. To

get the polynomial stability, we will impose assumptions to bound
∫ T
0 (−Rη1, η1)dt from below.

11



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Proposition 1.4.7 For all T > 0, there exists c > 0 depending on T such that

∫ T

0
(−Rη1(t), η1(t))dt ≤ c

∫ T

0
(−Rη(t), η(t))dt. (1.18)

Proof. Throughout the proof, we use the notation A . B to denote the inequality A ≤ cB for
some positive constant c depending on T . Recall that B can be written as B0 + R where B0 is
skew-adjoint and R is self-adjoint with

(Rη, η) = ℜ(Bη, η) ≤ 0.

Note also that ℜ(Rη, κ) = ℜ(Rκ, η) from which we deduce that,

ℜ(Rη, κ) ≤ (−Rη, η) 1
2 (−Rκ, κ) 1

2 .

Hence (−Rη, η) 1
2 defines a semi norm on Cn. As η1 = η − η2, we get:

(−Rη1, η1) ≤ 2 ((−Rη, η) + (−Rη2, η2)) . (1.19)

Next, we show that
∫ T
0 (−Rη2(t), η2(t)) dt .

∫ T
0 (−Rη(t), η(t))dt. Indeed, we have:

u2(t) =

∫ t

0
eA(t−s)




0
0

Rη(s)


 ds.

As A is skew-adjoint, it follows from Remark 1.4.2 that A generates a group. Moreover, we have

(u2(t), u2(t))H =

∫ t

0


eA(t−s)




0
0

Rη(s)


 ,



y2(t)
z2(t)
η2(t)






H

ds

=

∫ t

0






0
0

Rη(s)


 , e−A(t−s)



y2(t)
z2(t)
η2(t)






H

ds

=

∫ t

0

(
Rη(s), p3(e

−A(t−s)u2(t))
)
Cn
ds,

where p3(u) denotes the projection of u ∈ H on Cn. It follows that

∫ t

0
(Rη(s), p3(e

−A(t−s)u2(t)))ds ≤
∫ t

0
(−Rη(s), η(s)) 1

2 (−Rp3(e−A(t−s)u2(t)), p3(e
−A(t−s)u2(t)))

1
2ds

.

(∫ t

0
(−Rη(s), η(s))ds

) 1
2
(∫ t

0
‖p3(e−A(t−s)u2(t))‖2Cnds

) 1
2

.

We then get for t < T ,

‖u2(t)‖2H .

(∫ t

0
(−Rη(s), η(s)) ds

) 1
2

‖u2(t)‖H

12



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Consequently,

‖η2(t)‖Cn ≤ ‖u2(t)‖H .

(∫ T

0
(−Rη(t), η(t)) dt

) 1
2

,

which leads to
∫ T

0
(−Rη2(t), η2(t)) dt .

∫ T

0
‖η2(t)‖2Cndt .

∫ T

0
(−Rη(t), η(t)) dt.

Hence by (1.19), we conclude that (1.18) holds.

In the next section we find a lower bound of
∫ T
0 (−Rη1(t), η1(t)) dt, that allows to deduce a

lower bound of
∫ T
0 (−Rη(t), η(t)) dt.

1.4.4 An Observability Inequality

First, we present the following lemma which guarantees that Pηµ 6= 0, for all µ with small
modulus. The purpose of this lemma is to deal with the terms of low indices in the proposition
that follows. As a second consequence, it also implies that under its assumptions A has no
eigenvalues on the imaginary axis.

Lemma 1.4.8 Suppose that σ(A) ∩ σ(B0) ⊂ {ikπ : k ∈ Z} and Pνk 6= 0, where νk represents
the eigenvector of B0 associated with ikπ ∈ σ(B0). Suppose moreover that

P
(
(iµI −B0)

−1C
)
6= 0, ∀iµ ∈ σ(A)\σ(B0),

then Pηµ 6= 0, for all iµ ∈ σ(A).

Proof. Let iµ ∈ σ(A). If iµ 6∈ σ(B0), then by Proposition 1.3.2 and Proposition 1.3.6, we get
iµ 6= ikπ for all k ∈ Z. Since ηµ is given by ηµ = −(iµI − B0)

−1Cαµ sinµ for some nonzero α
and P

(
(iµI −B0)

−1C
)
6= 0, then P (ηµ) 6= 0.

If iµ ∈ σ(B0), then µ = k0π for some k0 ∈ Z. But by Proposition 1.3.2 and by (1.8) of
Proposition 1.3.3, ηµ the last component of the eigenvector φµ of A associated with iµ is
different from 0 and satisfies B0ηµ = iµηµ. Hence Pηµ 6= 0.

Remark 1.4.9 If C 6∈ ker(iµI −B0)
⊥ and (η, C) 6= 0 for all nonzero η ∈ ker(iµI −B0), for all

iµ ∈ σ(B0) with µ 6= kπ for every k ∈ Z, then by Proposition 1.3.7 we get σ(A)∩σ(B0) ⊂ {ikπ :
k ∈ Z}. Remark also that if the eigenvalues of B0 are geometrically simple then the conditions
needed to imply σ(A)∩ σ(B0) ⊂ {ikπ : k ∈ Z} reduce to C 6∈ ker(iµI −B0)

⊥ for all iµ ∈ σ(B0) .

Corollary 1.4.10 Under the assumptions of Lemma 1.4.8, we have

σ(A) ∩ iR = ∅.

Proof. By Proposition 1.3.3 (see (1.8)), iµ 6= 0 ∈ σ(A) ∩ iR if and only if there exists a non
zero (η, α) ∈ Cn × C solution of

(iµI −B0 −R)η + Cµ sinµα = 0, (η, C) + iµ cosµα = 0. (1.20)

13



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Taking the inner product of the first identity with η, we find

((iµI −B0 −R)η, η) + µ sinµα(C, η) = 0.

Taking into account the second identity of (1.20), we get

((iµI −B0 −R)η, η) + iµ2 sinµ cosµ|α|2 = 0.

The real part of this identity is nothing but

−(Rη, η) = 0.

Moreover, if 0 ∈ σ(A)∩ iR then by Proposition 1.3.2 we deduce that Bη = 0 from which we also
deduce that −(Rη, η) = 0, or equivalently η ∈ kerR (or Pη = 0). Coming back to (1.20), we see
that (η, α) ∈ Cn × C is also solution of

(iµI −B0)η + Cµ sinµα = 0, (η, C) + iµ cosµα = 0,

for µ 6= 0 and B0η = 0 for µ = 0. In other words, iµ ∈ σ(A) and by Lemma 1.4.8, Pη cannot be
zero.

We recall in the subsequent theorem an inequality of Ingham’s type (see for instance [11]).

Theorem 1.4.11 Let (λn)n∈Z be a strictly increasing sequence of real numbers and let U be a
separable Hilbert space. Suppose the sequence (λn) satisfies the "gap" condition

∃γ > 0, ∀n ∈ Z, λn+1 − λn ≥ γ,

then for all sequence (an)n∈Z ⊂ U , the function

f(t) =
∑

n∈Z
ane

iλnt

satisfies the estimate ∫ T

0
‖f(t)‖2 ∼

∑

n∈Z
‖an‖2U ,

for T > 2πγ.

Now we suppose that

all λ ∈ σ(A) ∩ σ(B0) ⊂ {inπ : n ∈ Z} are simple eigenvalues of B0. (1.21)

We already know that the algebraic and the geometric multiplicities of the eigenvalues of A
are equal, since A is skew-adjoint. Moreover, we previously showed that the eigenvalues of A
which do not belong to σ(B0) are simple. Hence we notice that the algebraic multiplicity of any
eigenvalue of A and its geometric multiplicity is equal to 1. As A is a skew-adjoint operator with
compact resolvent, the spectrum of A may be represented by a sequence (λ0,n)n∈I = (iµn)n∈I
with (µn)n∈I a strictly increasing sequence, where I = Z∗ if A is invertible and I = Z with

µ0 = 0 if A is not invertible. Denote by (φ0,n)n∈I =
(
(y

(n)
1 , z

(n)
1 , η

(n)
1 )⊤

)
n∈I

the corresponding

sequence of eigenvectors associated with (λ0,n)n∈I .

14



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Proposition 1.4.12 Assume (1.14) and (1.21) and let u1 = (y1, z1, η1)
T be the solution of the

conservative problem (1.15) with initial datum u0 ∈ D(A). If the assumptions of Lemma 1.4.8
hold, then there exists T > 0 and c > 0 depending on T such that

∫ T

0
‖Pη1(t)‖2dt ≥ c‖u0‖2D(A−(m+1))

. (1.22)

Proof. As (φ0,n)n∈I forms a Hilbert basis of H, we may write u0 =
∑

n∈I
u
(n)
0 φ0,n. Moreover,

u1(t) =
∑

n∈I
u
(n)
0 eiµntφ0,n, η1(t) =

∑

n∈I
u
(n)
0 eiµntη

(n)
1 , Pη1(t) =

∑

n∈I
u
(n)
0 eiµntPη

(n)
1 .

Note that µn+1 − µn ≥ π
2 for |n| large enough, say for |n| ≥ n0. Set γ0 =

min
{
π
2 ,min{µn+1 − µn : |n| < n0}

}
. As µk+1 − µk ≥ γ0 > 0, then using Ingham’s inequality

there exists T > 2πγ0 > 0 and a constant c > 0 depending on T such that

∫ T

0
‖Pη1(t)‖2dt ≥ c

∑

n∈I
‖u(n)0 Pη

(n)
1 ‖2.

For n0 ∈ N large enough, there exists an integer kn0 such that for all |n| ≥ n0 we have
µn ∈ [knπ, kn+1π] with kn+1 = kn + 1 and

Pη
(n)
1 = (−1)n

1

im−1

(
P (Bm

0 C)

km+1
n πm+1

+ o

(
1

km+1
n

))
,

then using the fact that ‖Pη(n)1 ‖2 ∼ 1

k
2(m+1)
n π2(m+1)

, and due to Lemma 1.4.8, we obtain by

Ingham’s inequality the existence of T > 0 such that

∫ T

0
‖Pη1‖2dt &

∑

|n|<n0

|u(n)0 |2|λ0,n|−2(m+1) +
∑

|n|≥n0

|u(n)0 |2

k
2(m+1)
n

, (1.23)

with the notation 0−2(m+1) = 1. For a non invertible A, define the norm on D(A−(m+1)) by

‖u0‖2D(A−(m+1))
:= |u(0)0 |2 +

∑

n∈Z∗

|λ0,n|−2(m+1)|u(n)0 |2,

then estimate (1.23) implies (1.22).

1.4.5 Interpolation inequality

Lemma 1.4.13 For all u0 ∈ D(A) and all s ∈ N, we have ‖u0‖s+1
H ≤ ‖u0‖D(A−s)‖u0‖sD(A).

Proof. We proceed by proving: ‖u0‖2H ≤ ‖u0‖
2

s+1

D(A−s)
‖u0‖

2s
s+1

D(A).

In fact, we have ‖u0‖2H =
∑

n∈I
|u(n)0 |2, where u0 =

∑

n∈I
u
(n)
0 φ0,n with I = Z or I = Z∗.

15



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Using Cauchy-Schwarz inequality, we get for any γ > 0, β > 0 such that γ + β = 2, and any
conjugate exponents p > 0, q > 0 and any α > 0

∑

n∈I
|u(n)0 |2 =

∑

n∈I
|u(n)0 |2|λ0,n|α|λ0,n|−α =

∑

n∈I
|u(n)0 |β |λ0,n|α|u(n)0 |γ |λ0,n|−α

≤
(
∑

n∈I
(|u(n)0 |β |λ0,n|α)p

) 1
p
(
∑

n∈I
(|u(n)0 |γ |λ0,n|−α)q

) 1
q

,

with 0α = 0−α = 1 as notation, and ‖u0‖2D(Ar) :=
∑

n∈I
|u(n)0 |2|λ0,n|2r for all r ∈ R.

The result follows from the following choice q = s+ 1, p = q
s , α = β = 2

p = 2s
q , γ = 2

q .

The next Lemma proved in Lemma 5.2 of [8] is required for the proof of stability.

Lemma 1.4.14 Let (εk)k be a sequence of positive real numbers satisfying

εk+1 ≤ εk − Cε2+α
k+1 , ∀k ≥ 0,

where C > 0 and α > −1. Then there exists a positive constant M (depending on α and C) such
that

εk ≤ M

(1 + k)
1

α+1

, ∀k ≥ 0.

1.4.6 The polynomial stability

We are now able to state our polynomial stability result.

Theorem 1.4.15 Let u be a solution of the problem (1.3) with initial datum u0 ∈ D(A). Let
the assumptions of Lemma 1.4.8 be satisfied. Assume moreover (1.21) and the existence of m as
defined by equation (1.14), then we obtain the following polynomial energy decay:

E(t) ≤ M

(1 + t)
1

m+1

‖u0‖2D(A),

for some M > 0.

Proof. Let p = m+1. With T > 0 from Proposition 1.4.12 we have E(T ) ≤ E(0)−K‖u0‖2D(A−p),
where K is a positive constant depending on T . Indeed, by Proposition 1.4.12 we have

E(T )− E(0) =

∫ T

0
(Rη, η)dt ≤ 1

c

∫ T

0
(Rη1, η1)dt ≤

−α
c

∫ T

0
‖Pη1(t)‖22dt ≤ −K‖u0‖2D(A−p).

Set E1(0) =
1
2

(
‖u0‖2H + ‖Au0‖2H

)
.

By Lemma 1.4.13, we have ‖u0‖2D(A−p) ≥ ‖u0‖2(p+1)
H

‖u0‖2pD(A)

≥ Ep+1(0)
Ep

1 (0)
. Since the energy is decreasing

with time, we obtain

E(T ) ≤ E(0)−K
Ep+1(0)

Ep
1(0)

≤ E(0)−K
Ep+1(T )

Ep
1(0)

.

16



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

We prove similarly that

E((k + 1)T ) ≤ E(kT )−K
Ep+1((k + 1)T )

Ep
1(kT )

.

Dividing by E1(0) and noting that E1(0) ≥ E1(kT ), we obtain

εk+1 ≤ εk −Kεp+1
k+1,

with εk = E(kT )
E1(0)

.

Applying Lemma 1.4.14, there exists M > 0 depending on T such that εk ≤ M

(1+k)
1

1+α
, where

2 + α = p+ 1, which implies that

E(t) ≤ M

(1 + t)
1
p

E1(0),

since E1(0) . ‖u0‖2D(A).

1.5 Optimality of the energy decay rate

Let
f(λ) = det(λI −B) coshλ+ (adj(λI −B)C,C) sinhλ,

g(λ) = det(λI −B0) coshλ+ (adj(λI −B0)C,C) sinhλ.

In order to find a correspondence between the eigenvectors of A and A, we discuss in the subse-
quent proposition the number of roots of g and f in appropriate regions of the complex plane.

Proposition 1.5.1 The number of eigenvalues of A counted with multiplicities is equal to that
of A in the square Cn = [−nπ, nπ]× [−nπ, nπ], for n large enough.

Proof. Using Rouché’s Theorem we prove that f and g have the same number of roots in Cn,
for n large enough.

Let h(λ) = coshλ+ ((λI −B)−1C,C) sinhλ and h0(λ) = coshλ+ ((λI −B0)
−1C,C) sinhλ.

Computing h(λ)− h0(λ) for |λ| large enough, we get:

h(λ)− h0(λ) =
(
(λI −B)−1C,C

)
sinhλ−

(
(λI −B0)

−1C,C
)
sinhλ

=
sinhλ

λ

((
I − B

λ

)−1

C −
(
I − B0

λ

)−1

C,C

)

Cn

=
sinhλ

λ

( ∞∑

n=1

Bn −Bn
0

λn
C,C

)

Cn

=
(RC,C)

λ2
sinhλ+ o

(
1

λ2

)
sinhλ.

17
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Consider the ratio of |h(λ)− h0(λ)| by |h0(λ)|

|h(λ)− h0(λ)|
|h0(λ)|

=
| (RC,C)

λ2 sinhλ+ o( 1
λ2 ) sinhλ|

| coshλ+ ((λI −B)−1C,C) sinhλ|

≤ K

|λ2 coshλ
sinhλ + λ

∞∑

n=0

(BnC,C)

λn
|
.

Note that for λ = x+ iy, we have | sinhλ|2 = sin2 y + sinh2 x, and | coshλ|2 = cos2 y + sinh2 x,
thus 1− 1

sinh2 x
≤ | coshλ

sinhλ |2 ≤ 1 + 1
sinh2 x

, which implies that for |x| = |ℜ(λ)| → ∞, | coshλ
sinhλ | → 1.

We deduce that
|h(λ)− h0(λ)|

|h0(λ)|
→ 0, as |ℜ(λ)| → ∞.

Suppose that |ℑ(λ)| = |y| = nπ, then |λ coshλ
sinhλ |2 = (n2π2 + x2)

(
1 + 1

sinh2 x

)
≥ n2π2. It follows

that for such λ, |h(λ)−h0(λ)|
|h0(λ)| → 0 as n→ ∞.

For n chosen large enough, we then have |h(λ)−h0(λ)|
|h0(λ)| → 0, for all λ ∈ ∂Cn.

Consider the ratio |f(z)−g(z)|
|g(z)| , we may write for |λ| > max{‖B‖, ‖B0‖}

|f(λ)− g(λ)|
|g(λ)| =

| det(λI −B)h(λ)− det(λI −B0)h0(λ)|
| det(λI −B0)h0(λ)|

≤ | det(λI −B)|
| det(λI −B0)|

|h(λ)− h0(λ)|
|h0(λ)|

+
| det(λI −B)− det(λI −B0)|

| det(λI −B0)|

Knowing that det(λI −B) is a monic polynomial of degree n we get

| det(λI −B)|
| det(λI −B0)|

→ 1, as |λ| → ∞

and
| det(λI −B)− det(λI −B0)|

| det(λI −B0)|
.

1

|λ| → 0, as |λ| → ∞.

We deduce that for λ ∈ ∂Cn with |λ| → ∞, we have |f(λ)−g(λ)|
|g(λ)| → 0. Thus for λ ∈ ∂Cn

and n large enough, |f(λ)−g(λ)|
|g(λ)| < 1.

Clearly, f and g are analytic, this together with the above comparison allows to apply Rouché’s
theorem in Cn for n large enough, from which we deduce that f and g have the same number of
roots in Cn.

Definition 1.5.2 A system {gn}n∈N of elements of H is said to be ω−linearly independent if

∞∑

n=1

angn = 0 implies an = 0, ∀n ∈ N.

In order to show that the generalized eigenfunctions of A are ω−linearly independent, we use
the following Lemma mentioned in [21].

18
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Lemma 1.5.3 Let B be a densely defined closed linear operator in a Hilbert space H. Assume
that the spectrum of B consists entirely of, at most countable, isolated points, each of which has
a finite algebraic multiplicity. Then the generalized eigenfunctions are ω−linearly independent.

To use Lemma 1.5.3, we show that the algebraic multiplicities of all eigenvalues of A are finite.
In fact, the multiple eigenvalues of A must satisfy a polynomial equation, thus they are finite
and of finite algebraic multiplicity.

Proposition 1.5.4 All the eigenvalues of A have finite algebraic multiplicities. Moreover, the
eigenvalues with large enough moduli are algebraically simple.

Proof. Define F by:

F (z) = 2ezf(z)

= e2zP1(z) + P2(z)

where P1(z) = det(zI −B) + (adj(zI −B)C,C), and P2(z) = det(zI −B)− (adj(zI −B)C,C).
Every non simple eigenvalue z satisfies F (z) = F ′(z) = 0, and thus satisfies P (z) = 0, where

P (z) =
F ′(z)P2(z)− F (z)P

′

2(z)

e2z
=

(
2P1(z) + P ′

1(z)
)
P2(z)− P1(z)P

′
2(z).

Hence a non simple eigenvalue z of A is one of at most 2n roots of P (z) having a multiplicity
≤ 2n, where n is the dimension of Cn.

Remark 1.5.5 Assume that

σ(A) ∩ σ(B0) ⊆ {ikπ : k ∈ Z} and σ(A) ∩ σ(B) = φ, (1.24)

then f and g describe the full spectrum of A and A respectively allowing to get a one-to-one
correspondence between the spectra of A and A. In practice, we will check conditions of Remark
1.4.9, C 6∈ ker(λ̄I −B∗)⊥ and (η, C) 6= 0 for all nonzero η ∈ ker(λI −B) for every λ ∈ σ(B) to
show that g represents the characteristic equation satisfied by all eigenvalues of A. Note that the
last condition is equivalent to C 6∈ ker(λI −B)⊥ for a geometrically simple eigenvalue λ of B.

In what follows we discuss the asymptotic behavior of the eigenvalues of A and the associated
eigenvectors that allows studying some cases in which optimality of the polynomial decay can be
obtained.

Proposition 1.5.6 Let λ be an eigenvalue of A with |λ| large enough. Then λ satisfies the
following expansion for some k large enough,

λ = i

(
kπ +

π

2
+

‖C‖2
kπ

− ‖C‖2
2k2π

+
(B0C,C)

ik2π2

)
+

(RC,C)

k2π2
+ o

(
1

k2

)
. (1.25)

Proof. Let λ with |λ| > ‖B‖ be a root of h, since F (λ) = 0, then

e2λ = −
(
1− 2

(
(λI −B)−1C,C

)

1 + ((λI −B)−1C,C)

)
.
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Setting

x = 2

(
(λI −B)−1C,C

)

1 + ((λI −B)−1C,C)
,

we have

x =
2

λ

∞∑

n=0

(BnC,C)

λn
1

1 +

∞∑

n=0

(BnC,C)

λn+1

= 2
‖C‖2
λ

+ 2
(BC,C)− ‖C‖4

λ2
+ o

(
1

λ2

)
,

and

x2 = 4
‖C‖4
λ2

+ o

(
1

λ2

)
.

It follows that

ln(1− x) = −
∞∑

n=1

xn

n
= −2

‖C‖2
λ

− 2
(BC,C)

λ2
+ o

(
1

λ2

)
.

As |λ| is large, the imaginary part of λ lies between kπ and (k + 1)π for some k large enough,
and

λ = i(kπ +
π

2
) +

1

2
ln(1− x).

As 1
λ = − i

kπ + i
2k2π

+ o
(

1
k2

)
and 1

λ2 = − 1
k2π2 + o

(
1
k2

)
, we obtain (1.25) as required.

To show that the system of generalized eigenfunctions of A forms a Riesz basis of H, we use
the following well known Bari’s theorem.

Theorem 1.5.7 Let I be a countable set. Consider the two systems (ψk)k∈I and (φk)k∈I of
vectors of H such that (φk)k∈I is a Riesz basis of H. If (ψk)k∈I is a sequence of ω−linearly

independent vectors quadratically close to (φk)k∈I(i.e.
∑

k∈I
‖ψk − φk‖2 < +∞), then (ψk)k∈I is a

Riesz basis of H.

Denote by (λk)k∈I the set of eigenvalues of A counted with multiplicities such that

ℑ(λk) ≤ ℑ(λk+1), ∀k ∈ I.

We use the notation (λ0,k)k∈I introduced before to denote the sequence of eigenvalues of A.

Proposition 1.5.8 If (1.24) holds, then the system of generalized eigenvectors of A forms a
Riesz basis of H.

Proof. For k ∈ N large enough, an eigenvector φk (respectively φ0,k) of A associated with the
eigenvalue λk (respectively λ0,k) whose imaginary ℑ(λk) (respectively ℑ(λ0,k)) lies between nkπ
and (nk + 1)π for some integer nk and whose norm ‖φk‖ ∼ 1, is given by

φk =
1

λk

(
sinh(λkx), λk sinh(λkx), λk sinhλk(λkI −B)−1C

)
.
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with
1

λk
=

1

inkπ
+ o(

1

nk
) ∼

1

i
√
N(µnk

)
∼

1

λ0,k
.

Now, we examine for k large enough the following difference,

‖φk − φ0,k‖2 =

∫ 1

0
| λk,0

i
√
(N(µnk

))
cosh(λk,0x)− cosh(λkx)|2dx

+

∫ 1

0
| λk,0

i
√
(N(µnk

))
sinh(λk,0x)− sinh(λkx)|2dx

+

∫ 1

0
‖ 1

i
√

(N(µnk
))

∞∑

n=0

Bn
0

λnk,0
C sinh(λk,0)−

1

λk

∞∑

n=0

Bn

λnk
C sinh(λk)‖2Cndx.

Indeed, we have

| λk,0

i
√
(N(µnk

))
cosh(λk,0x)− cosh(λkx)| .

1

nk
.

Similarly, we obtain

| λk,0

i
√

(N(µnk
))

sinh(λk,0x)− sinh(λkx)|2 .
1

n2k
.

Using the fact that ℜ(λk) → 0, as k → ∞, then for k large enough, we get

‖ 1

i
√
(N(µnk

))

∞∑

n=0

Bn
0

λnk,0
C sinh(λk,0)−

1

λk

∞∑

n=0

Bn

λnk
C sinh(λk)‖2Cn ≤ 1

n2k
.

We conclude that ∑

k∈I
‖φk − φ0,k‖2H < +∞,

which implies that the conditions of Bari’s theorem hold because of (1.24) (see Remark 1.5.5).

Definition 1.5.9 For all u0 ∈ D(A) define ω(u0) by

ω(u0) = sup{α ∈ R : E(t) =
1

2
‖u(t)‖2 . 1

tα
}.

A decay rate is said to be optimal if it is equal to the minimum of ω(u0) over all values of
u0 ∈ D(A). Our aim is thus to find inf

u0∈D(A)
ω(u0). We recall the following Lemma (see [34,53]),

which will be used in the proof of optimality.

Lemma 1.5.10 Consider a C0-semigroup T (t) acting on a (real or complex) Hilbert space H
with infinitesimal generator A. Assume the following
(i) For k ∈ N∗, the eigenvalue λk of A is of the form λk = −σk + iτk with σk ≥ c1

kδ
, where

c1 > 0 and δ > 0 are independent of k.
(ii) The eigenvectors φk, k ≥ 1 associated with the eigenvalue λk form a Riesz basis of H.
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(iii) Let u0 ∈ H be such that

u0 =
∑

k≥1

akφk, |ak| ≤
c2
kq
, c2 > 0, q >

1

2
.

Then there exists a constant c > 0 depending on u0 such that ‖T (t)u0‖H ≤ c

t(q−
1
2 )/δ

, ∀t > 0.

Remark 1.5.11 Note that if σk ∼ 1
kδ

and |ak| ∼ 1
kq then the equivalence

‖T (t)u0‖H ∼ 1

t(q−
1
2
)/δ
, ∀t > 0

holds.

Proposition 1.5.12 Let the assumptions of Theorem 1.4.15 together with (1.24) of Remark
1.5.5 be satisfied. If ℜ(λk) ∼ − 1

kδ
, with δ ≥ 2(m+ 1), then

inf
u0∈D(A)

ω(u0) =
1

m+ 1
.

Proof. Let ε > 0 be given and let k0 be large enough so that λk is algebraically simple for

all k ≥ k0. Set uε0 =
∑

k≥k0

1

kq
φk, with q = δ

2(m+1) +
1
2 + δε

2 . As 2(q − 1) > 1, uε0 ∈ D(A) and

‖Auε0‖2 ∼
∑

k≥k0

1

k2(q−1)
< +∞. Moreover, due to Proposition 1.5.8 the system (φk)k∈I forms a

Riesz basis of H. Using Remark 1.5.11, we get

‖u(t)‖ ∼ 1

t
(q− 1

2 )

δ

=
1

t
1

2(m+1)
+ ε

2

.

We deduce that E(t) ∼ 1

t
1

(m+1)
+ε

, and therefore

1

m+ 1
≤ inf

u0∈D(A)
ω(u0) ≤

1

m+ 1
+ ε, ∀ε > 0.

Hence inf
u0∈D(A)

ω(u0) =
1

m+1 .

Corollary 1.5.13 If m = 0 we obtain optimal polynomial energy decay given by

E(t) ≤ c

t
‖Au0‖2H.

Proof. Using Theorem 1.4.15, the solution of system (1.1) satisfies the energy estimate given by
E(t) ≤ c

t‖Au0‖2H. Since PC 6= 0 and (−RC,C) & α‖PC‖2 for some α > 0, then ℜ(λk) ∼ − 1
k2

and the optimality is thus obtained by applying Proposition 1.5.12 with δ = 2.

We would like now to investigate the optimality of the energy decay in the case m = 1.
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Corollary 1.5.14 If m = 1, (RC,C) = 0 and ℑ(B2C,C) = 0 then the polynomial energy decay
rate is optimal.

Proof. By straightforward computations, we get

λ = i(kπ +
π

2
)− ‖C‖2

λ
− (BC,C)

λ2
−

‖C‖6
3 + (B2C,C)

λ3
− ‖C‖4(BC,C) + (B3C,C)

λ4
+ o

(
1

λ4

)
.

Then by further calculation, as (RC,C) = 0 we obtain

ℜ(λ) = ℑ(B2C,C)

k3π3
− 3ℑ(B2C,C)

2k4π3
− ℜ(B3C,C)

k4π4
+ o

(
1

k4

)
.

Moreover, since ℑ(B2C,C) = ℑ((RB0 +B0R)C,C) = 0, we get

ℜλ = −ℜ(B3C,C)

k4π4
+ o

(
1

k4

)
,

and the optimality follows.

Remark 1.5.15 In the case m = 1, if B ∈Mn(R),M ∈Mn(R) and C ∈ Rn then the sufficient
conditions to obtain optimality reduce to the first condition (RC,C) = 0.

1.6 Examples

In this section, we present some examples and applications, in which we obtain polynomial
stability and check the optimality of the energy decay rate.

1.6.1 Example 1.

Let us consider the following system (Pb0,b1) given by:





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t) + ηt(t) = 0, t > 0,
ηtt(t) + b1ηt(t) + b0η(t)− yt(1, t) = 0, t > 0,

where y represents the transversal displacement of the vibrating string and η denotes the dy-
namical control variable. Here b0 and b1 are positive constants.
This system is nothing but the system considered in [16, 38] with a scalar variable instead of a
vectorial one in R3. In [38], the authors obtained polynomial stability using a multiplier method
but no optimality of the polynomial decay was proven. By our study, the optimal polynomial
decay is obtained.

In this case, we have

n = 2, B =

(
0 1

−b0 −b1

)
and C =

(
0
1

)
.
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The inner product considered on C2 is given by
((

x
y

)
,

(
x1
y1

))

C2

= b0xx̄1 + yȳ1, or M =

(
b0 0
0 1

)
,

and

B∗ =

(
0 −1
b0 −b1

)
, B0 =

(
0 1

−b0 0

)
, R =

(
0 0
0 −b1

)
.

The energy space is
H = V × L2(0, 1)× C2,

endowed with the following inner product

((y, z, η, κ), (y1, z1, η1, κ1)) =

∫ 1

0
yxȳ1xdx+

∫ 1

0
zz̄1dx+ b0ηη̄1 + κκ̄1.

Define
D(A) = {(y, z, η, κ) ∈ H2(0, 1) ∩ V × V × C2 : yx(1) = −κ},

and

A




y
z
η
κ


 =




z
yxx
κ

z(1)− b0η − b1κ


 .

B is Hurwitz, since
det(λI −B) = λ2 + b1λ+ b0

has no pure imaginary roots. Moreover, we have

ℜ(Bη, η) ≤ 0 and | det(izI −B)|2ℜ
(
(izI −B)−1C,C

)
= b1z

2 > 0, ∀z ∈ R∗.

Due to Proposition 1.2.1 and Corollary 1.3.10, we deduce the well-posedness of the system and
the asymptotic stability of its energy.
In addition, the conditions of Lemma 1.4.8 are satisfied. In fact, we have

det(λI −B0) = λ2 + b0, σ(B0) = {±i
√
b0} and adj(λI −B0)C =

(
1
λ

)
,

and the spaces kerR and W are given by span

{(
1
0

)}
and span

{(
0
1

)}
respectively, thus

P ((λI −B0)
−1C) 6= 0, ∀λ ∈ σ(A) \ σ(B0).

To check the rest of the conditions of the lemma, we distinguish two cases:
Case 1. If µ2 = b0 6= k2π2 for all k ∈ Z, then

C 6∈ ker(iµI −B0)
⊥.

Indeed, computing ((
1
iµ

)
,

(
0
1

))
= iµ 6= 0,

implies that C 6∈ ker(iµI − B0)
⊥, as we have η ∈ ker(iµI − B0) if and only if η = (1, iµ)⊤

up to a nonzero constant. So by Remark 1.4.9, σ(A) ∩ σ(B0) ⊂ {±ikπ : k ∈ Z}. In fact,
due to Proposition 1.3.6, σ(A) ∩ σ(B0) ⊂ {±ikπ : k ∈ Z} ∩ σ(B0), thus σ(A) ∩ σ(B0) = φ.
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Case 2. If b0 = k2π2 for some k ∈ N∗, then σ(B0) = {±ikπ}. Computing the associated
eigenvectors we get

η±kπ =

(
1

±ikπ

)
and P (η±kπ) =

(
0

±ikπ

)
6= 0.

As (1.21) holds, then applying Theorem 1.4.15 for m = 0 (since PC 6= 0), we deduce that the
energy of the system satisfies the following polynomial decay

E(t) ≤ 1

1 + t
‖u0‖2D(A).

It can be easily checked that C 6∈ ker(λ̄I − B∗)⊥ ∪ ker(λI − B)⊥, for all λ ∈ σ(B), which
allows us to deduce that condition (1.24) of Remark 1.5.5 is satisfied, as we already checked that
C 6∈ ker(iµI −B0)

⊥. Due to Corollary 1.5.13, we conclude the optimality of the energy decay.

1.6.2 Example 2.

Considering the following boundary conditions at x = 1 in system (1.1)





yx(1, t) + b0η(t) = 0, t > 0,
ηt(t)− κ(t)− yt(1, t) = 0, t > 0,
κt(t) + b0η(t) + b1κ(t) = 0, t > 0,

we get a system of the form (1.1) which is obtained by replacing C =

(
0
1

)
in the first example

by C =

(
1
0

)
and keeping B,B∗, B0, and R as before.

Moreover, for all z ∈ R we have

| det(izI −B)|2ℜ
(
(izI −B)−1C,C

)
= b1b

2
0 > 0,

thus using Corollary 1.3.10, we deduce the asymptotic stability of its energy.

In addition, to verify the conditions of Lemma 1.4.8, it is enough to remark that

P (adj(λI −B0)C) = P

(
λ

−b0

)
=

(
0

−b0

)
6= 0,

and as the discussion of the case b0 = k2π2 of the first example remains unchanged, to check
that σ(A) ∩ σ(B0) ⊂ {±ikπ : k ∈ Z}, we just remark that

(−iµI +B0)C =

(
−iµ
−b0

)
6= 0, and

((
1
iµ

)
,

(
1
0

))

Cn

= b0 6= 0.

Applying Theorem 1.4.15 for m = 1 (since PC = 0 and P (B0C) 6= 0), we deduce that the
energy of the system satisfies the following polynomial decay

E(t) ≤ 1√
1 + t

‖u0‖2D(A).

Moreover, by the first example condition (1.24) holds, thus the decay is optimal by Remark
1.5.15, since RC = 0.
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1.6.3 Example 3.

Consider the following system in which the dynamical boundary control involves a third order
differential equation of the dynamical variable η,





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t) + 2η(t) + 2ηt(t) + ηtt(t) = 0, t > 0,
ηttt(t) + 2ηtt(t) + 3ηt(t) + η(t)− yt(1, t) = 0, t > 0.

By introducing the following variables η1 = 2η + 2ηt + ηtt,η2 = −η − ηt, η3 = η, the last two
equations can be rewritten in the form

{
yx(1, t) + (δ(t), C) = 0, t > 0,
δt(t)−Bδ(t)− Cyt(1) = 0, t > 0,

where δ = (η1, η2, η3)
⊤, and (·, ·) denotes the usual inner product defined on C3, and the

matrices B and C are given by:

B =




0 1 0
−1 −1 1
0 −1 −1


 , C =



1
0
0


 .

We have ℜ(Bδ, δ) = −|η2|2− |η3|2 ≤ 0 and det(λI −B) = λ3+2λ2+3λ+1, thus B has no pure
imaginary eigenvalues. We also have | det(izI−B)|2ℜ((izI−B)−1C,C) = z2+2 > 0, for all z ∈
R∗. Using Proposition 1.2.1 and Corollary 1.3.10, the solution of the proposed system exists and
unique and its energy is asymptotically stable. We proceed by checking the conditions of Lemma
1.4.8. Computing the characteristic equation of B0, we get

det(λI −B0) = λ(λ2 + 2) and σ(B0) = {0,±i
√
2}.

For λ = ±i
√
2, we have ker(λI−B0) = span{(−λ

2 , 1,
λ
2 )

⊤}, it follows that (C, (−λ
2 , 1,

λ
2 )

⊤) = −λ
2 ,

which is nonzero thus C 6∈ ker(λI −B0)
⊥. Computing W and adj(λI −B0)C, we obtain

W = span







0
1
0


 ,



0
0
1





 , adj(λI −B0)C =



λ2 + 1
−λ
1


 ,

then P ((λI−B0)
−1C) 6= 0 for all λ ∈ σ(A)\σ(B0). The eigenvector of B0 associated with λ = 0

and its projection on W are given by

η =



1
0
1


 , Pη =



0
0
1


 6= 0.

Substituting m by 1 in Theorem 1.4.15 (since PC = 0 and P (B0C) 6= 0), we deduce that the
energy of the solution of (1.26) fulfills the following polynomial estimate

E(t) ≤ 1√
1 + t

‖Au0‖2D(A).

Verifying condition (1.24) and noting that B and C have real components and (RC,C) = 0, we
conclude the optimality by Remark 1.5.15.
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1.6.4 Example 4.

Consider the following system given by:




ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t)− η(t)− ηt(t)− ηtt(t) = 0, t > 0,
ηttt(t) + ηtt(t) + 2ηt(t) + η(t) + yt(1, t) = 0, t > 0.

Choosing
η1 = −η − ηt, η2 = −η − ηt − ηtt, η3 = η,

we get a system in the form of system (1.1) with

B =




0 1 1
−1 0 0
−1 0 −1


 , B0 =




0 1 1
−1 0 0
−1 0 0


 , R =



0 0 0
0 0 0
0 0 −1


 , C =



0
1
0


 .

As det(izI−B) = −iz3−z2+2iz+1 6= 0, ∀z ∈ R and ℜ(Bη, η) ≤ 0, where (·, ·) denotes the usual
inner product defined on C3, we deduce that B is Hurwitz. By a straight forward calculation we
have

| det(izI −B)|2ℜ((izI −B)−1C,C) = 1 > 0, ∀z ∈ R

we deduce by Proposition 1.2.1 the existence and uniqueness of the solution of the system and
the asymptotic stability of its energy follows from Corollary 1.3.10. We also have

adj(λI −B0)C =




λ
λ2 + 1
−1


 ,

knowing that the space W is spanned by (0, 0, 1)⊤ we deduce P ((λI −B0)
−1C) 6= 0, for every

λ ∈ σ(A) \ σ(B0). Moreover, the characteristic equation of B0 is given by det(λI − B0) =
λ(λ2 + 2), thus the eigenvalues of B0 are 0,±i

√
2. The eigenvector associated with zero is given

by (0, 1,−1)⊤, whose projection on W is nonzero and ker(λI − B0) is spanned by ( 2λ , 1, 1)
⊤ for

λ = ±i
√
2, then C 6∈ ker(λI − B0)

⊥. We deduce that the conditions of Lemma 1.4.8 holds and
we therefore get the following estimate

E(t) ≤ 1

(1 + t)
1
3

‖u0‖2D(A).

by simply replacing m by 2 in Theorem 1.4.15, as PC = 0, P (B0C) = 0, and P (B2
0C) 6= 0.

Moreover, computing the asymptotic expansion of λ ∈ σ(A) for a modulus large enough with
ℑ(λ) ∈ (kπ, (k + 1)π), we get

λ = i(kπ +
π

2
)− 1

λ
+

2

3λ3
− 6

5λ5
+

1

λ6
+ o

(
1

λ6

)
,

then ℜ(λ) = − 1
k6π6 + o

(
1
k6

)
, in addition C 6∈ ker(λ̄I −B∗)⊥ ∪ ker(λI −B)⊥, thus the conditions

of Proposition 1.5.12 holds and the optimality of the energy decay follows.
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1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

1.6.5 Example 5.

Consider the following system given by:




ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t)− b1η(t)− ηt(t) + κ(t) = 0, t > 0,
ηtt(t) + b1ηt(t) + b0η(t) + b0yt(1, t) = 0, t > 0,
κt(t) + b2κ(t)− yt(1, t) = 0, t > 0.

with b0, b1, b2 positive constants. Choosing

η1 = −ηt + b1η

b0
, η2 = η, η3 = κ,

we get a system in the form of (1.1) with

B =




0 1 0
−b0 −b1 0
0 0 −b2


 , C =



1
0
1


 .

In addition,

M =



b0 0 0
0 1 0
0 0 1


 , B0 =




0 1 0
−b0 0 0
0 0 0


 , R =



0 0 0
0 −b1 0
0 0 −b2


 , adj(λI −B0)C =




λ2

−b0λ
λ2 + b0


 .

It is easy to check that ℜ(Bη, η) ≤ 0, and since det(λI − B) = (λ+ b2)(λ
2 + b1λ+ b0), then B

is Hurwitz. We also have

| det(izI −B)|2ℜ
(
(izI −B)−1C,C

)
= b2z

4 + (b20b1 + b2b
2
1 − 2b0b2)z

2 + b20b2(b1b2 + 1),

which is positive for all z ∈ R, we thus obtain an asymptotically stable system. The space W is
given by span{(0, 1, 0)⊤, (0, 0, 1)⊤}, then

P (adj(λI −B0)C) = (0,−b0λ, λ2 + b0)
⊤ 6= 0, ∀λ 6∈ σ(B0).

The spectrum of B0 is given by σ(B0) = {0,±i
√
b0}. The eigenvector of B0 associated with 0

is equal to (0, 0, 1)⊤ up to a nonzero constant, thus P (0, 0, 1)⊤ 6= 0. For λ = ±iµ = ±i
√
b0, we

have
ηµ = (1,±iµ, 0)⊤ and Pηµ 6= 0.

Moreover, it can be easily checked that C 6∈ ker(λI − B0)
⊥ for all λ ∈ σ(B0). Hence Theorem

1.4.15 applied for m = 0 (as PC 6= 0), gives the following energy decay estimate

E(t) ≤ 1

1 + t
‖Au0‖2H.

Finally, we may easily verify that for all geometrically simple λ ∈ σ(B) we have C 6∈ ker(λ̄I −
B∗)⊥∪ker(λI−B)⊥. Consequently, if B has geometrically simple eigenvalues (or equivalently if
b22+ b0 6= b1b2), then the optimality of the polynomial decay rate can be deduced from Corollary
1.5.13.
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2 The multidimensional wave equation with

generalized acoustic boundary conditions

2.1 Introduction

Denote by Ω a bounded open connected set of Rd, d ≥ 1, with a Lipschitz boundary ∂Ω = Γ
assumed to be divided into two disjoint parts,

Γ = Γ0 ∪ Γ1,

where Γ0 is assumed to be closed with a nonempty interior and Γ1 relatively open in Γ which
could be possibly empty. We further assume that Γ0 ∩ Γ̄1 is of class C1 in the sense explained
later.

For n ∈ N∗, we further fix C ∈ C0,1(Γ0,C
n) and a matrix valued function B ∈ C0,1(Γ0,Mn(C))

and for every x ∈ Γ0, an inner product (·, ·)x in Cn such that

ℜ(B(x)·, ·)x ≤ 0. (2.1)

For every x ∈ Γ0, let M(x) ∈Mn(C) be the Hermitian positive-definite matrix associated with
this inner product, i.e.

(δ1, δ2)x = δ̄⊺2M(x)δ1, ∀δ1, δ2 ∈ Cn.

From now on we further assume that M is Lipschitz continuous on Γ0. For the sake of brevity, if
there is no confusion we use the notation (·, ·) to denote (·, ·)x. The associated norm is denoted
by ‖ · ‖.

We consider the following evolution problem with a Dirichlet boundary condition on Γ1 and a
dynamical control on Γ0, described as follows:





ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
y(x, t) = 0 , x ∈ Γ1, t > 0,
∂y
∂ν (x, t) = (δ(x, t), C) , x ∈ Γ0, t > 0,
δt(x, t) = Bδ(x, t)− Cyt(x, t) , x ∈ Γ0, t > 0,

(2.2)

with the following initial conditions:
{
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,
δ(x, 0) = δ0(x), x ∈ Γ0,

(2.3)

where y is a complex valued function (representing the transverse displacement in the case
Ω ⊂ R and the potential velocity in the case Ω ⊂ Rd, with d ≥ 2) and δ denotes the dynamical
control variable.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

In a first step, we try to find sufficient conditions that guarantee the strong stability of the
system. Here, as the domain of the associated operator is not compactly embedded into the
natural energy space, we may expect that its spectrum is not only made of eigenvalues. We
prove such a result in our general setting but since Dirichlet boundary conditions are imposed on
a part of the boundary, we were not able to use the single-layer potential technique of [16] and
instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C as
in the one-dimensional case allow us to show that the associated operator has no eigenvalues on
the imaginary axis, hence we obtain the strong stability by using Arendt-Batty theorem (see [10]
and Theorem 1.3.1). In dimension one, using the compact perturbation result of Russell [46],
the dissipative system (2.2) is not uniformly stable (see [2] and [37, Rk 2]). In dimension larger
than 2, this argument cannot be used, but nevertheless by using the spectral properties of the
Laplace operator with specific Robin boundary conditions on Γ0, we will show that the resolvent
of the associated operator is not uniformly bounded on the imaginary axis and by the frequency
domain approach [23, 26, 43], we will conclude that our system is not uniformly stable. Hence
we are interested in proving a weaker decay of the energy. More precisely, we will give sufficient
conditions on Γ0, B and C that yield the polynomial decay of the energy of our system (for initial
data in the domain of the associated operator). A first approach is to use a multiplier method (as
in [38,50,53]) but this approach requires a quite strong geometrical assumption on Γ0. Hence we
alternatively use the frequency domain approach from [19]. In this case, we find an appropriate
bound for the resolvent on the imaginary axis by using the exponential or polynomial decay of
the wave equation with the standard damping

∂y

∂ν
(x, t) = −yt on Γ0,

and an assumption on the behavior of ℜ((isI −B)−1C,C) for all real number s whose modulus
is large enough. This leads to quite weaker geometrical assumption on Γ0 due to the results
from [12, §5] or [28, 29] for instance. In particular, with this second approach as Γ1 can be
empty, we significantly improve results from [16] and [38].

The chapter is organized as follows. The second section deals with the well-posedness of
the problem obtained by using semigroup theory. Section 2.3 is devoted to the analysis of
the spectrum of the associated operator that is characterized by using a Fredholm alternative
technique. The strong stability of the system is studied in section 2.4 by using Arendt-Batty
theorem. In section 2.5, we show that the resolvent of the operator is not uniformly bounded on
the imaginary axis and deduce that our system is not uniformly stable. Section 2.6 is devoted
to the proof of the polynomial decay of our system by using the frequency domain approach,
while in section 2.8 we prove a similar polynomial decay by using the multiplier method. We
shortly look for the case Γ1 empty in section 2.7. Finally some particular examples illustrating
our general framework are presented in section 2.9.

In the whole chapter, we assume that Γ1 is nonempty (without any specification), the case Γ1

empty is only supposed in section 2.7 (and in section 2.9). The case d = 1 was discussed in the
first chapter, we assume that d > 1 throughout the remainder of the chapter.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

2.2 Well-posedness results

As usual, to prove existence result for system (2.2) we use a reduction of order argument.
Hence, we define

V = {y ∈ H1(Ω) : y = 0 on Γ1} = H1
Γ1
(Ω),

that is a Hilbert space endowed with the following inner product (y1, y2)V =
∫ 1
0 ∇y1∇ȳ2dx, and

norm ‖y‖V = (y, y)
1
2
V . The energy space is then

H = V × L2(Ω)× (L2(Γ0))
n
,

endowed with the following inner product,

((y, z, δ), (y1, z1, δ1))H =

∫

Ω
∇y∇ȳ1dx+

∫

Ω
zz̄1dx+

∫

Γ0

(δ, δ1)dx. (2.4)

We define the unbounded operator associated with the evolution problem by (A, D(A)),

AU =




z
∆y

Bδ − Cγ0z


 , U =



y
z
δ


 ∈ D(A),

where D(A) = {U ∈ H : ∆y ∈ L2(Ω), z ∈ V, ∂y∂ν = C⊺Mδ on Γ0}, in the last component γ0z is
the trace of z on Γ0 and the boundary condition

∂y

∂ν
= (δ, C) on Γ0, (2.5)

is to be viewed in the following weak sense (see [25]):
∫

Ω
∆yϕdx+

∫

Ω
∇y∇ϕdx =

∫

Γ0

(δ, C)γ0ϕds, ∀ϕ ∈ V. (2.6)

If y and δ are solution of system (2.2) and are sufficiently smooth, we easily check that
U = (y, z, δ)⊤ is solution of the Cauchy problem

Ut = AU, U(0) = U0 (2.7)

with U0 = (y0, y1, δ0)
⊤.

The energy of our system (2.2) (or (2.7)) is then naturally defined by

E0(t) =
1

2
‖U(t)‖2H =

1

2

(∫

Ω
|∇y|2dx+

∫

Ω
|yt|2dx+

∫

Γ0

‖δ‖2ds
)
, (2.8)

for U(t) = (y, yt, δ) ∈ V × L2(Ω)× (L2(Γ0))
n solution of (2.7).

Hence, we proceed by proving that A is m-dissipative.

Proposition 2.2.1 The operator A is m-dissipative.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Proof. Let U =



y
z
δ


 ∈ D(A). Then as z ∈ V , using (2.6) we get:


A



y
z
δ


 ,



y
z
δ






H

=

∫

Ω
∇z∇ȳdx+

∫

Ω
∆yz̄dx+

∫

Γ0

(Bδ − Cγ0z, δ)Rnds

=

∫

Ω
∇z∇ȳdx−

∫

Ω
∇y∇z̄dx+

∫

Γ0

(δ, C)γ0z̄ds+

∫

Γ0

(Bδ − Cγ0z, δ)Rnds.

Consequently,

ℜ(AU,U) =

∫

Γ0

ℜ(Bδ, δ)Rnds ≤ 0, (2.9)

and thus A is dissipative.

We would like to show that there exists λ > 0 such that λI − A is surjective. Let λ > 0 be
given. For F = (y1, z1, δ1)

⊤ ∈ H, we look for U = (y, z, δ)⊤ ∈ D(A) such that

(λI −A)U = F,

or equivalently 



λy − z = y1,
λz −∆y = z1,
(λI −B)δ + Cγ0z = δ1.

(2.10)

Assume that such a (y, z, δ)⊤ ∈ D(A) exists, then z = λy− y1, and as λ 6∈ σ(B), δ is given by

δ = (λI −B)−1 (δ1 + Cγ0 (y1 − λy)) . (2.11)

Hence, y ∈ V satisfies
λ2y −∆y = z1 + λy1, (2.12)

and the boundary condition
∂y

∂ν
= (δ, C) on Γ0.

We first look for an associated weak formulation of this problem on y (and then prove that it
admits a unique solution using Lax-Milgram lemma). Multiplying (2.12) by a function ϕ ∈ V ,
integrating the obtained identity in Ω and by (2.6) (allowed since we assume that y ∈ V exists
with the property ∆y ∈ L2(Ω)), we find

aλ(y, ϕ) = LF (ϕ), ∀ϕ ∈ V, (2.13)

where aλ and LF are given by

aλ(y, ϕ) =

∫

Ω
λ2yϕ̄dx+

∫

Ω
∇y∇ϕ̄dx+

∫

Γ0

λ((λI −B)−1C,C)γ0yγ0ϕ̄ds, (2.14)

LF (ϕ) =

∫

Ω
(z1 + λy1)ϕ̄dx+

∫

Γ0

(
(λI −B)−1(Cγ0y1 + δ1), C

)
γ0ϕ̄ds. (2.15)
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Clearly, L̄F is a linear continuous functional on V , and āλ is a sesquilinear continuous form on
V . Finally, aλ is coercive on V , indeed, for any y ∈ V , we have

aλ(y, y) = λ2
∫

Ω
|y|2dx+

∫

Ω
|∇y|2dx+

∫

Γ0

((λI −B)−1C,C)λ|γ0y|2ds.

But (2.1) implies that ℜ((λI −B)−1C,C) ≥ 0, since

ℜ
(
(λI −B)−1C,C

)
= ℜ (u, (λI −B)u) = λ‖u‖2 −ℜ(u,Bu) ≥ 0,

with u = (λI −B)−1C. Hence, ℜaλ(y, y) & ‖y‖2V , which implies that aλ is coercive.
Applying Lax-Milgram Lemma, there exists a unique solution y ∈ V of (2.13). In particular,

taking ϕ ∈ D(Ω) in (2.13), we get

λ2y −∆y = z1 + λy1 in D′(Ω). (2.16)

We deduce that ∆y ∈ L2(Ω). Substitute λ2y by ∆y + z1 + λy1 in (2.13), we obtain
∫

Ω
∆yϕ̄dx+

∫

Ω
∇y∇ϕ̄dx+

∫

Γ0

(
(λI −B)−1Cλγ0y, C

)
γ0ϕ̄ds

=

∫

Γ0

(
(λI −B)−1 (δ1 + Cγ0y1), C

)
γ0ϕ̄ds.

Defining δ = (λI − B)−1(δ1 + Cγ0y1 − Cλγ0y) ∈
(
(L2(Γ0)

)n
, we get ∂y

∂ν = (δ, C). By defining
z = λy − y1, we deduce the surjectivity of λI −A.

Remark 2.2.2 From the previous proof, we see that if 0 is not an eigenvalue of B(x), for all
x ∈ Γ0, then A is bijective and A−1 is bounded. The converse also holds, see Proposition 2.4.1
below.

Since A is m-dissipative, then Lumer-Phillips theorem implies that A generates a C0-semigroup
of contractions on H (see for instance [42]), and allows us to state the following results.

Corollary 2.2.3 (i) For an initial datum U0 ∈ H there exists a unique solution U ∈
C([0,+∞),H) of (1.3). Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞), D(A)) ∩ C1([0,+∞),H).

(ii) For each U0 ∈ D(A), the energy E0(t) of the solution U of (1.3) satisfies

d

dt
E0(t) = ℜ

∫

Γ0

(Bδ, δ)ds ≤ 0,

and therefore the energy is non-increasing.

Proof. (i) is a direct consequence of Lumer-Phillips theorem, (ii) holds simply since

dE(t)

dt
= ℜ(dU(t)

dt
, U(t)) = ℜ(AU(t), U(t)),

for all U ∈ D(A).

Remark 2.2.4 If U0 ∈ D(Am), then

U ∈ C([0,+∞), D(Am)) ∩ C1([0,+∞), D(Am−1)) ∩ ... ∩ Cm([0,+∞),H).
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2 The multidimensional wave equation with generalized acoustic boundary conditions

2.3 The spectrum of A
As D(A) is not compactly embedded into H, we can expect that the spectrum of A is not

only constituted of eigenvalues. This is indeed the case if Γ1 is empty and in the setting of
example 1 below as shown in [16]. Our aim is to prove such a result in our general setting. Since
Dirichlet boundary conditions are imposed on a part of the boundary, we were not able to use
the single-layer potential technique of [16] and we instead use a Fredholm alternative technique.

Recall that an operator T from a Hilbert space X into itself is called singular if there exists
a sequence un ∈ D(T ) with no convergent subsequence such that ‖un‖X = 1 and Tun → 0 in
X, see [54]. According to Theorem 1.14 of [54] T is singular if and only if its kernel is infinite
dimensional or its range is not closed.

Now define
Σ := {λ ∈ C : ∃x ∈ Γ0 : λI −B(x) is not invertible }.

From the continuity of B, Σ is a compact subset of C.

We state in the following theorem some spectral properties of A (compare with Theorem 3.2
of [16]).

Theorem 2.3.1 The following results hold:

1. If λ ∈ Σ, then λ−A is singular,

2. If λ 6∈ Σ, then λ−A is a Fredholm operator of index zero.

Proof. To prove the first point, we fix λ ∈ Σ. Then there exists x0 ∈ Γ0 and δ ∈ Cn, δ 6= 0 such
that

(λI −B(x0))δ = 0.

Denote by −∆m the positive self-adjoint operator defined by

D(−∆m) = {y ∈ V : ∆y ∈ L2(Ω) and
∂y

∂ν
= 0 on Γ0},

and
−∆my = −∆y, ∀y ∈ D(−∆m).

Denote by {λ2k}k∈N∗ the (discrete) spectrum of −∆m (repeated according to their multiplicity)
and let ϕk be the corresponding orthonormalized eigenvectors.

According to the Fredholm alternative, for any complex number µ we have the two following
cases:
i) either µ 6= −λ2k, for all k ∈ N∗ and for an arbitrary F ∈ V ′, there exists a unique solution of
y ∈ V of ∫

Ω
(µyw̄ +∇y · ∇w̄) dx = F (w), ∀w ∈ V, (2.17)

ii) or there exists k0 ∈ N∗ such that µ = −λ2k0 and then for any F ∈ V ′ such that

F (ϕk) = 0, ∀k ∈ N∗ : λ2k = −µ,

there exists a unique solution of y ∈ V (orthogonal to the ϕk, for all k ∈ N∗ : λ2k = −µ) of (2.17).
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Now we set
Un = (yn, λyn, δn),

with
δn = ηnδ,

where (ηn)n is the sequence associated with x0 built in Lemma 2.3.3 below and yn ∈ V is the
solution of ∫

Ω
(λ2ynw̄ +∇yn · ∇w̄) dx = Fn(w), ∀w ∈ V, (2.18)

where Fn ∈ V ′ is defined by

Fn(w) :=
∑

k∈N∗:λ2
k=−λ2

α
(n)
k

∫

Ω
ϕkw̄ dx+

∫

Γ0

(δn, C)w̄ dσ, ∀w ∈ V,

with

α
(n)
k = −

∫

Γ0

(δn, C)ϕ̄k dσ, ∀k ∈ N∗ : λ2k = −λ2,

for λ ∈ Σ such that λ2 ∈ σd(∆m).
If λ2 6∈ σd(∆m), we simply define Fn by

Fn(w) :=

∫

Γ0

(δn, C)w̄ dσ, ∀w ∈ V.

The existence of a unique solution yn of (2.18) in both cases is a consequence of the Fredholm
alternative mentioned above.

Let us proceed first with the case λ2 ∈ σd(∆m). The existence of yn is justified by the fact
that

Fn(ϕk) = 0, ∀k ∈ N∗ : λ2k = −λ2.
Before going further we notice that

α
(n)
k → 0 as n→ ∞, ∀k ∈ N∗ : λ2k = −λ2. (2.19)

Indeed, by definition we have

|α(n)
k | . ‖ηn‖H−1/2(Γ0)

|ϕk|H1(Ω) . ‖ηn‖H−1/2(Γ0)
|λk|,

and by Lemma 2.3.3 below we obtain (2.19). A direct consequence of this property is that

‖Fn‖V ′ → 0 as n→ ∞,

and again by the Fredholm alternative

‖yn‖V → 0 as n→ ∞. (2.20)

Now applying Green’s formula (as in Proposition 1.2.1), we see that yn ∈ V solution of (2.18)
satisfies

λ2yn −∆yn = gn :=
∑

k∈N∗:λ2
k=−λ2

α
(n)
k ϕk in D′(Ω). (2.21)
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as well as
∂yn
∂ν

= (δn, C), on Γ0. (2.22)

Consequently, Un belongs to D(A) and

λUn −AUn = (0, gn, (B(x0)−B)δn + λCyn). (2.23)

Let us show that
λUn −AUn → 0 in H as n→ ∞. (2.24)

Indeed, by definition we can write

‖gn‖2L2(Ω) =
∑

k∈N∗:λ2
k=−λ2

|α(n)
k |2

and we directly deduce from (2.19) that

‖gn‖L2(Ω) → 0 as n→ ∞.

For the third component by the triangular inequality and a trace theorem, we have

‖(B(x0)−B)δn + λCyn‖L2(Γ0) . ‖(B(x0)−B)δn‖L2(Γ0) + ‖yn‖V .

Since the second term of this right-hand side tends to zero as n goes to infinity, it remains to
estimate the first term: But B being uniformly continuous, we have

∀ε > 0, ∃ηε > 0 : |x− x0| < ηε ⇒ ‖B(x0)−B(x)‖ < ε.

But by construction, the support of δn is included in B(x0, εn)∩Γ0 with εn ≤ C
n , for some C > 0

(independent of n). Hence, for a fixed ε > 0, and for n > C
ηε
, we have

‖B(x0)−B(x)‖ < ε, ∀x ∈ supp δn,

and we deduce that
‖(B(x0)−B)δn‖L2(Γ0) ≤ ε‖δn‖L2(Γ0) = ε‖δ‖.

This shows that
‖(B(x0)−B)δn‖L2(Γ0) → 0 as n→ ∞,

and finishes the proof of (2.24).
It remains to check that

‖Un‖H ∼ 1. (2.25)

Indeed, by definition, we have

‖Un‖2H = ‖yn‖2V + |λ|2‖yn‖2L2(Ω) + ‖δn‖2L2(Γ0)
,

hence by (2.20), we get
‖Un‖2H ∼ ‖δn‖2L2(Γ0)

= ‖δ‖2 > 0.

If λ2 6∈ σd(∆m), then the solution yn ∈ V of (2.18) satisfies

λ2yn −∆yn = 0, in D′(Ω),
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and
∂yn
∂ν

= (δn, C), on Γ0,

thus Un belongs to D(A) and satisfies (2.25) with gn = 0, i.e.

(λUn −AUn) = (0, 0, (B(x0)−B)δn + λCyn).

Moreover, it clearly satisfies both (2.24) and (2.25).

Note that (2.25) also implies that (Un) has no convergent subsequence. Indeed, if a subsequence
(Unk

) is such that
Unk

→ U in H, as k → ∞,

then by (2.20), (ηnk
)k converges in L2(Γ0), which contradicts Lemmas 2.3.3 and 2.3.4.

In conclusion, we have shown that λ−A is singular.
For any λ ∈ C \ Σ, we denote by Aλ the linear (and continuous) operator from V into V ′

defined by
〈Aλu, v〉V ′−V := aλ(u, v), ∀u, v ∈ V,

where aλ is defined by (2.14) (well defined because λ ∈ C \ Σ). According to the proof of
Proposition 1.2.1, Aλ is an isomorphism for all positive real numbers. Hence, if we show that for
any λ, µ ∈ C\Σ, Aλ−Aµ is a compact operator, then by a standard perturbation result, Aλ will
be a Fredholm operator of index zero for any λ ∈ C \Σ. To prove our compactness property, we
notice that

〈(Aλ −Aµ)u, v〉V ′−V = (λ2 − µ2)

∫

Ω
uv̄dx

+

∫

Γ0

(λ((λI −B)−1C,C)− µ((µI −B)−1C,C)γ0uγ0v̄ds.

Hence, due to the continuity of B and C, and Cauchy-Schwarz’s inequality, we see that
∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣ ≤ |λ2 − µ2|‖u‖L2(Ω)‖v‖L2(Ω)

+ C(λ, µ)‖u‖L2(Γ0)‖v‖L2(Γ0),

where C(λ, µ) is a positive constant depending on λ and µ. Hence, by a trace theorem, we deduce
that for any ε ∈ (0, 12)

∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣ ≤ |λ2 − µ2|‖u‖L2(Ω)‖v‖L2(Ω)

+ C(λ, µ)Cε‖u‖V ‖v‖
H

1
2+ε(Ω)

,

where Cε is a positive constant depending on ε.
In conclusion, for any ε ∈ (0, 12) if we set

H
1
2
+ε

Γ1
(Ω) = {v ∈ H

1
2
+ε(Ω) : v = 0 on Γ1},

that is clearly a Hilbert space equipped with the inner product of H
1
2
+ε(Ω), we have shown that

there exists a positive constant C(λ, µ, ε) depending on λ, µ and ε such that
∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣ ≤ C(λ, µ, ε)‖u‖V ‖v‖
H

1
2+ε(Ω)

, ∀u, v ∈ V.
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Equivalently, this means that

sup
v∈V,v 6=0

∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣
‖v‖

H
1
2+ε(Ω)

≤ C(λ, µ, ε)‖u‖V .

Accordingly, as V is dense in H
1
2
+ε

Γ1
(Ω), we deduce that (Aλ −Aµ)u belongs to (H

1
2
+ε

Γ1
(Ω))′ with

‖(Aλ −Aµ)u‖
(H

1
2+ε

Γ1
(Ω))′

= sup

v∈H
1
2+ε

Γ1
(Ω),v 6=0

∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣
‖v‖

H
1
2+ε(Ω)

= sup
v∈V,v 6=0

∣∣〈(Aλ −Aµ)u, v〉V ′−V

∣∣
‖v‖

H
1
2+ε(Ω)

≤ C(λ, µ, ε)‖u‖V .

As V is compactly and densely embedded into H
1
2
+ε

Γ1
(Ω), by duality, (H

1
2
+ε

Γ1
(Ω))′ is also com-

pactly embedded into V ′ and therefore Aλ −Aµ is a compact operator from V into V ′.
Now we readily check that, for any λ ∈ C \ Σ, we have the equivalence

y ∈ kerAλ ⇐⇒ (y, λy,−λ(λI −B)−1Cγ0y)
⊤ ∈ ker(λI −A). (2.26)

This equivalence implies that for any λ ∈ C \ Σ, ker(λI −A) is always finite-dimensional and
has the same dimension as kerAλ. This last property follows from the fact (used below) that
the expression

(y, z)λ,V :=
(
(y, λy,−λ(λI −B)−1Cγ0y)

⊤, (z, λz,−λ(λI −B)−1Cγ0z)
⊤)

H,

is an inner product on V whose associated norm is equivalent to the standard one. Denote by
{y(i)}Ni=1 an orthonormal basis of kerAλ for this new inner product (for shortness the dependence
of λ is dropped), i.e.

(y(i), y(j))λ,V = δij , ∀i, j = 1, . . . , N.

Finally, for all i = 1, . . . , N , we set

Z(i) = (y(i), λy(i),−λ(λI −B)−1Cγ0y
(i))⊤,

the element of ker(λI − A) associated with y(i) that are orthonormal with respect to the inner
product of H.

Let us now show that for all λ ∈ C \ Σ, the range R(λI −A) of λI −A is closed. Indeed, let
us consider a sequence Un = (yn, zn, δn)

⊤ ∈ D(A) such that

(λI −A)Un = Fn = (y1n, z1n, δ1n)
⊤ → F = (y1, z1, δ1)

⊤ in H. (2.27)

Without loss of generality we can assume that

(Un, Z
(i))H = −αn,i, ∀i = 1, . . . , N. (2.28)

where
αn,i := ((0, y1n,−(λI −B)−1(δ1n + Cγ0y1n))

⊤, Z(i))H.
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Indeed, if this is not the case, we can consider

Ũn = Un −
N∑

i=1

βiZ
(i)

that still belongs to D(A) and satisfies

(λI −A)Ũn = Fn,

as well as
(Ũn, Z

(i))H = −αn,i, ∀i = 1, . . . , N,

by setting
βi = (Un, Z

(i))H + αn,i, ∀i = 1, . . . , N.

Note that the condition (2.28) is equivalent to

(yn, y
(i))λ,V = 0, ∀i = 1, . . . , N.

In other words,
yn ∈ (kerAλ)

⊥λ,V , (2.29)

where ⊥λ,V means that the orthogonality is taken with respect to the inner product (·, ·)λ,V .
Returning to (2.27), the arguments of the proof of Proposition 1.2.1 imply that

Aλyn = LFn in V ′,

where LF was defined by (2.15). But it is easy to check that

LFn → LF in V ′.

Moreover, as λ ∈ C \Σ, Aλ is an isomorphism from (kerAλ)
⊥λ,V into R(Aλ), hence by (2.29) we

deduce that there exists a positive constant C(λ) such that

‖yn − ym‖V ≤ C(λ)‖LFn − LFm‖V ′ , ∀n,m ∈ N.

Hence, (yn)n is a Cauchy sequence in V , and therefore there exists y ∈ V such that

yn → y in V,

as well as
Aλy = LF in V ′.

Setting z = λy − y1 and δ = (λI − B)−1(δ1 − Cγ0z), we deduce that U := (y, z, δ)⊤ belongs to
D(A) and

(λI −A)U = F.

In other words, F belongs to R(λI −A). The closedness of R(λI −A) is thus proved.
At this stage, for any λ ∈ C \ Σ, we show that

codim R(Aλ) = codim R(λI −A), (2.30)
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where codim W is the dimension of the orthogonal of W .
Indeed, let us set N = codim R(Aλ), then there exist N elements ϕi ∈ V, i = 1, . . . , N such

that
f ∈ R(Aλ) ⇐⇒ f ∈ V ′ and 〈f, ϕi〉V ′−V = 0, ∀i = 1, . . . , N.

Consequently, for F ∈ H, if LF (that belongs to V ′) satisfies

LF (ϕi) = 0, ∀i = 1, . . . , N, (2.31)

there exists a solution y ∈ V of
Aλy = LF in V’,

and as usual the arguments of the proof of Proposition 1.2.1 implies that F is in R(λI − A).
Hence, the N conditions on F ∈ H from (2.31) allow to show that it belongs to R(λI −A), and
therefore

codim R(λI −A) ≤ N = codim R(Aλ). (2.32)

This shows that λI −A is a Fredholm operator.
Conversely, set M = codim R(λI −A), then there exist M elements Ψi = (yi, zi, δi) ∈ H, i =

1, . . . ,M such that

F ∈ R(λI −A) ⇐⇒ F ∈ H and (F,Ψi)H = 0, ∀i = 1, . . . ,M.

Then, for any f ∈ L2(Ω), if

(f, zi)L2(Ω) = ((0, f, 0)⊤,Ψi)H = 0, ∀i = 1, . . . ,M, (2.33)

there exists U = (y, z, δ)⊤ ∈ D(A) such that

(λI −A)U = (0, f, 0),

or equivalently (using the definition of A and the invertibility of λI −B)

z = λy,

λ2y −∆y = f,

δ = −λ(λI −B)−1Cγ0y.

Multiplying this second identity by ϕ ∈ V , integrating in Ω and using Green’s formula (2.6), we
obtain that

aλ(y, ϕ) =

∫

Ω
fϕ̄dx, ∀ϕ ∈ V.

This shows that
R(Aλ) ⊃ {f ∈ L2(Ω) satisfying (2.33)}.

Hence,
codim R(Aλ) ≤M = codim R(λI −A). (2.34)

The inequalities (2.32) and (2.34) imply (2.30).
We conclude the second point by using the fact that Aλ is a Fredholm operator of index zero

for any λ ∈ C \ Σ, the equivalence (2.26) and the identity (2.30).
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Corollary 2.3.2 λ 6∈ Σ if and only if λ−A is a Fredholm operator of index zero.

Lemma 2.3.3 For every interior point x0 of Γ0, there exists a sequence (ηn)n∈N∗ of functions
in L2(Γ0) such that

‖ηn‖L2(Γ0) = 1, ∀n ∈ N∗, (2.35)

as well as
‖ηn‖

H− 1
2 (Γ0)

→ 0 as n→ ∞. (2.36)

Moreover, the support of ηn is included in B(x0, εn)∩Γ0 with εn ∼ 1
n and therefore the sequence

(ηn)n∈N∗ has no convergent subsequence in L2(Γ0).

Proof. By definition of the regularity of the boundary (see for instance [25, Def 1.2.1.1]), there
exist a neighborhood W of x0 in Rd and a local system of cartesian coordinates (y′, yd) and a
Lipschitz mapping ϕ from W ′ the projection of W on Rd−1 to R such that W is a hypercube
and

Ω ∩W = {(y′, yd) ∈W : yd < ϕ(y′)},
Γ0 ∩W = {(y′, yd) ∈W : yd = ϕ(y′)}.

Denote by y′0 the point in W ′ such that

(y′0, ϕ(y
′
0)) = x0.

Fix a function η ∈ D(Rd−1) with a support in B(0, 1) and such that

‖η‖L2(Rd−1) = 1.

Then for n large enough namely such that B̄(y′0,
1
n) ⊂W ′, we take

ηn(y
′, ϕ(y′)) = n

d−1
2 η(n(y′ − y′0)), ∀y′ ∈W ′

and extended by zero outside Γ0 ∩W .
We directly check that the support of ηn is (in this proof ‖ · ‖2 means the Euclidean norm of

Rd−1 or Rd)

Sn = {(y′, ϕ(y′)) : ‖y′ − y′0‖2 ≤
1

n
}.

Hence, for (y′, ϕ(y′)) ∈ Sn, we have

‖(y′, ϕ(y′))− (y′0, ϕ(y
′
0))‖2 ∼ ‖y′ − y′0‖2 + |ϕ(y′)− ϕ(y′0)| ∼ ‖y′ − y′0‖2,

and the property on the support of ηn follows.
Now by a change of variables we see that

‖ηn‖2L2(Γ0)
∼ nd−1

∫

W ′

|η(n(y′ − y′0))|2 dy′ =
∫

Rd−1

|η(z)|2 dz,

and the property (2.35) holds (up to a multiplicative factor equivalent to 1).
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To prove (2.36), as L2(Γ0) is compactly embedded into H− 1
2 (Γ0), by (2.35) there exists a

subsequence, still denoted by (ηn), such that

ηn → η in H− 1
2 (Γ0) as n→ ∞,

for some η ∈ H− 1
2 (Γ0). But this property implies that

ηn → η in D′(Γ0) as n→ ∞.

As we will show that
ηn → 0 in D′(Γ0) as n→ ∞, (2.37)

we deduce that η = 0 and (2.36) follows.
In the same manner, if (ηn) would have a convergent subsequence in L2(Γ0), then by (2.37),

this subsequence would converge to 0 in L2(Γ0), which contradicts (2.35).
It then remains to show (2.37). For that purpose, fix ψ ∈ D(Γ0), then by a change of variables,

we may write

〈ηn, ψ〉 =

∫

Γ0

ηn(x)ψ(x) dσ

= n
d−1
2

∫

W ′

η(n(y′ − y′0))ψ(y
′, ϕ(y′))

√√√√1 +
d−1∑

i=1

| ∂ϕ
∂yi

(y′)|2 dy′

= n
1−d
2 γn(ψ),

where

γn(ψ) =

∫

B(0,1)
η(z)ψ(y′0 +

z

n
, ϕ(y′0 +

z

n
))

√√√√1 +

d−1∑

i=1

| ∂ϕ
∂yi

(y′0 +
z

n
)|2 dz.

Since ϕ is Lipschitz, we deduce that

|γn(ψ)| .
∫

B(0,1)
|η(z)|

∣∣∣ψ(y′0 +
z

n
, ϕ(y′0 +

z

n
))
∣∣∣ dz.

As ∫

B(0,1)
|η(z)|

∣∣∣ψ(y′0 +
z

n
, ϕ(y′0 +

z

n
))
∣∣∣ dz → |ψ(x0)|

∫

B(0,1)
|η(z)| dz as n→ ∞,

we have shown that γn(ψ) remains bounded as n becomes large. Therefore, we deduce that

〈ηn, ψ〉 → 0 as n→ ∞,

which proves (2.37).

Lemma 2.3.4 Let x0 ∈ ∂Γ0. Then the statements of Lemma 2.3.3 remain true.

Proof. As in the previous lemma there exist a neighborhood W of x0 in Rd, a local system of
cartesian coordinates (y′, yd) and a Lipschitz mapping ϕ from W ′ the projection of W on Rd−1

to R such that W is a hypercube and

Ω ∩W = {(y′, yd) ∈W : yd < ϕ(y′)},
Γ ∩W = {(y′, yd) ∈W : yd = ϕ(y′)}.
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Denote by y′0 the point in W ′ such that

(y′0, ϕ(y
′
0)) = x0,

and set
Φ(y′) = (y′, ϕ(y′)), ∀y′ ∈W ′,

that is a bijection from W ′ into Γ ∩W . Without loss of generality we may suppose that y′0 = 0.
Denote by Γ′

0 the set Φ−1(Γ0 ∩W ) ⊂ W ′, and by I ′ ⊂ W ′ the set I ′ = Φ−1(Γ0 ∩ Γ1 ∩W ). Our
assumption that Γ0 ∩ Γ̄1 is C1 means that the curve I ′ is a C1 curve in W ′, in other words,
there exist a local system of Cartesian coordinates (z′′, zd−1) and a C1 mapping ψ such that I ′

coincides near 0 with the curve
{(z′′, ψ(z′′)) : z′′ ∈W ′′},

while Γ′
0 coincides near 0 with

{(z′′, zd−1) : zd−1 > ψ(z′′), ∀z′′ ∈W ′′},

where again W ′′ is a hypercube of Rd−2. Again without loss of generality we can assume that
(0, ψ(0)) = 0 as well as ∇ψ(0) = 0.

Now instead of using the coordinates y′, we use the coordinates (z′′, zd−1) (and replace W ′ by
another hypercube W̃ ′′) and as before we perform the change of variables

{
ẑd−1 = nzd−1,
ẑ′′ = nz′′.

The difficulty lies in the fact that the curve I ′ becomes now the curve

ẑd−1 = nψ(
ẑ′′

n
),

that is tangent to the hyperplane ẑd−1 = 0 but depends on n and similarly the domain Γ′
0

becomes the domain

ẑd−1 > nψ(
ẑ′′

n
),

that also depends on n.
But the regularity on ψ allows to show that there exists ε > 0 small enough and n0 large

enough such that for all n > n0

n|ψ( ẑ
′′

n
)| ≤ ε, ∀‖ẑ′′‖2 ≤ 1. (2.38)

Indeed, for ẑ′′ fixed such that ‖ẑ′′‖ ≤ 1 and by considering the mapping f(t) = ψ( tx̂
′′

n ), we can
write

f(1) =

∫ 1

0
∇ψ

(
tx̂′′

n

)
· x̂

′′

n
dt,

and deduce,

n

∣∣∣∣ψ
(
ẑ′′

n

)∣∣∣∣ ≤ sup
‖ŵ′′‖2≤1

∣∣∣∣∇ψ
(
ŵ′′

n

)∣∣∣∣ .
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This leads to (2.38) because

sup
‖ŵ′′‖2≤1

∣∣∣∣∇ψ
(
ŵ′′

n

)∣∣∣∣ = sup
‖w′′‖2≤ 1

n

∣∣∇ψ
(
w′′)∣∣ ,

that tends to zero as n goes to infinity.
Now we mainly proceed as before: we fix a function η ∈ D(Rd−1) with a support included in

{(x̂′′, x̂d−1) ∈ B(0, 1) : x̂d−1 > 2ε} and such that

‖η‖L2(Rd−1
+ ) = 1.

Then for n large enough, we take

ηn((z
′′, zd−1), ϕ(z

′′, zd−1)) = n
d−1
2 η((nz′′, nzd−1))), ∀(z′′, zd−1) ∈ W̃ ′′

and extended by zero outside its support.
We directly check that the support of ηn is of size of order 1

n and is included in Γ0 ∩W . At
this stage the proof is continued as in the previous Lemma.

2.4 Strong stability

In [53] and [2], where the problem is one dimensional in space (i.e. d = 1), the strong stability
was proven using Arendt-Batty theorem (see [10] and Theorem 1.3.1) since the resolvent of the
infinitesimal generator considered therein is compact and therefore the study of σ(A) ∩ iR is
reduced to the study of purely complex eigenvalues of A. In our case, as D(A) is not compactly
embedded in H, this method partially fails to achieve the proof of strong stability. Nevertheless,
with similar assumptions on B as those of the one-dimensional case, we are able to obtain the
strong stability by using Arendt-Batty theorem (see Theorem 1.3.1).

In view of Theorem 2.3.1, σ(A) is not purely formed of eigenvalues and therefore we have to
analyze σd(A) ∩ iR as well as σ(A) \ σd(A)) ∩ iR.

We start with the eigenvalues of A on the imaginary axis.

Proposition 2.4.1 A is an isomorphism if and only if 0 6∈ Σ.

Proof. By Corollary 2.3.2, 0 6∈ Σ if and only if A is a Fredholm operator of index zero. Hence,
the conclusion follows if we show that

kerA = {0},

or equivalently, due to the proof of Theorem 2.3.1,

kerA0 = {0}.

But in view of the definition of A0, y ∈ kerA0 if and only if y ∈ V is solution of

a0(y, ϕ) =

∫

Ω
∇y∇ϕ̄dx = 0, ∀ϕ ∈ V.
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From the coerciveness of a0 on V , we conclude that y = 0.
For the other eigenvalues on the imaginary axis, we need the positive self-adjoint operator

−∆Dir defined by
D(−∆Dir) = {y ∈ H1

0 (Ω) : ∆y ∈ L2(Ω)}
and

−∆Diry = −∆y, ∀y ∈ D(−∆Dir).

Denote by σ(−∆Dir) := {λ2Dir,k}k∈N∗ the (discrete) spectrum of −∆Dir (repeated according to
their multiplicity) and let yDir,k be the corresponding orthonormalized eigenvectors.

Proposition 2.4.2 Assume that
(A1) ∀iz 6∈ Σ, z ∈ R∗, ∃αz > 0 : ℜ((izI −B(x))−1C(x), C(x)) ≥ αz, ∀x ∈ Γ0,
(A2) Σ ∩ {±iλDir,k, k ∈ N∗} = ∅,
(A3) ∀iz ∈ Σ : C 6∈ ker(izI +B∗)⊥ on Γ0,
(A4) ∀iz ∈ Σ : ∀M ⊂ Γ0 : meas M > 0 : ∃x ∈ M : (η, C(x))x 6= 0 for all nonzero
η ∈ ker(izI −B(x)).

Then
σd(A) ∩ iR∗ = ∅. (2.39)

Proof. Assume that iλ is a non zero eigenvalue of A in iR. Let U = (y, z, δ)⊤ ∈ D(A), U 6= 0
be the associated eigenvector. Then, we have

AU = iλU,

which implies z = iλy,
−λ2y −∆y = 0 in Ω,

as well as
(iλ−B)δ = −iλCy on Γ0. (2.40)

Now we distinguish two cases:
i) if iλ 6∈ Σ, then by the proof of Proposition 1.2.1, we deduce that y ∈ V satisfies

aiλ(y, ϕ) = 0, ∀ϕ ∈ V.

In particular, taking ϕ = y, we get
aiλ(y, y) = 0.

Taking the imaginary part of this identity, we find

−λ
∫

Γ0

ℜ((iλI −B(x))−1C(x), C(x))|γ0y(x)|2 dσ = 0.

Since λ is different from zero, we get
∫

Γ0

ℜ((iλI −B(x))−1C(x), C(x))|γ0y(x)|2 dσ = 0,

and by the assumption (A1) we find that

y = 0 on Γ0.

45



2 The multidimensional wave equation with generalized acoustic boundary conditions

Due to (2.40) and since iλ 6∈ Σ, we deduce that δ = 0 and then ∂y
∂ν = (δ, C) = 0, thus y satisfies





λ2y −∆y = 0 in Ω,
y = 0 on Γ,
∂y
∂ν = 0 on Γ0,

(2.41)

By Holmgren’s theorem we deduce that y = 0, which is impossible (otherwise U would be zero).
ii) if iλ ∈ Σ, then we again distinguish two cases:
a) if y = 0 (then δ 6= 0 on a set M of positive measure) and by (2.40), we find

(iλ−B)δ = 0 on Γ0.

On the other hand, (2.5) here implies

(δ, C) = 0 on Γ0,

which is in contradiction with (A4).
b) if y 6= 0, then (2.40) implies that

Cy ∈ R(iλ−B) = ker(iλI +B∗)⊥ on Γ0.

Hence, by our assumption (A3), we find that

y = 0 on Γ0.

This implies that y ∈ H1
0 (Ω) satisfies
∫

Ω
(−λ2yϕ̄+∇y · ∇ϕ̄) dx = 0, ∀ϕ ∈ H1

0 (Ω) ⊂ V.

Consequently, y ∈ D(−∆Dir) and satisfies

−∆Diry = λ2y.

We have shown that there exists k ∈ N∗ such that λ2 = λ2Dir,k. Coming back to (2.40), we see
that

(±iλDir,k −B)δ = 0 on Γ0.

From our assumption (A2) we deduce that

δ = 0 on Γ0.

This property and the boundary condition (2.5) then imply

∂y

∂ν
= 0 on Γ0.

By Holmgren’s theorem we deduce that y = 0, which is impossible.

Proposition 2.4.3 If (A1) to (A4) from the previous proposition hold, if 0 6∈ Σ and if Σ∩ iR is
countable, then the C0-semigroup associated with A is strongly stable.
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Proof. Propositions 2.4.1 and 2.4.2 guarantee that

σd(A) ∩ iR = ∅. (2.42)

Let us now show that
σ(A) ∩ iR ⊂ Σ ∩ iR. (2.43)

Indeed, if iλ ∈ σ(A) ∩ iR, then either iλ is in Σ as required, or iλ is not in Σ, but then by
Theorem 2.3.1, iλ belongs to σd(A) ∩ iR, which is impossible due to (2.42).

The two properties (2.42), (2.43) and the assumption that Σ∩ iR is countable finally allow to
apply the theorem of Arendt-Batty.

To end up this section, in the case when B and C are constant (in that case Σ = σ(B)), let
us show that the sufficient conditions from Proposition 2.4.3 are “almost" necessary. Namely we
prove the following result.

Proposition 2.4.4 Assume that B and C are constant on Γ0 and that (A1) holds, which in this
case reduces to

∀iz 6∈ σ(B), z ∈ R∗,ℜ((izI −B)−1C,C) > 0.

Then (A2), (A3), (A4) and 0 6∈ σ(B) hold if and only if the C0-semigroup associated with A is
strongly stable.

Proof. As Σ ∩ iR = σ(B) ∩ iR is finite, by the previous Proposition, the conditions (A2), (A3),
(A4) and 0 6∈ σ(B) are clearly sufficient (since (A1) holds). Hence, it suffices to show that they
are also necessary. For that purpose, we show that if (A2), (A3), (A4) or 0 6∈ σ(B) does not
hold, then A has an eigenvalue on the imaginary axis (since this condition directly implies that
the C0-semigroup associated with A is not strongly stable).

Firstly, if we assume that 0 ∈ σ(B), then there exists a nonzero δ ∈ Cn such that

Bδ = 0.

Hence, we consider y ∈ V solution of
{

∆y = 0 in Ω,
∂y
∂ν = (δ, C) on Γ0.

Such a solution exists and is the unique solution y ∈ V of
∫

Ω
∇y · ∇ϕ̄ dx = (δ, C)

∫

Γ0

ϕ̄ dσ, ∀ϕ ∈ V.

Since we easily check that (y, 0, δ) belongs to kerA, we deduce that 0 is an eigenvalue of A.
Secondly assume that (A2) does not hold, then this means that there exists k ∈ N∗ such that

iλDir,k ∈ σ(B) or − iλDir,k ∈ σ(B).

Assume that iλDir,k ∈ σ(B) (the other case is treated in the same manner), then there exists a
non-zero δk ∈ Cn such that

(iλDir,kI −B)δk = 0.

Now we distinguish the case (δk, C) = 0 or not:
i) if (δk, C) = 0, then we take (0, 0, δk) that belongs to ker(iλDir,kI −A) as easily checked.
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ii) if (δk, C) 6= 0, then (yDir,k, iλDir,kyDir,k, αkδk) belongs to ker(iλDir,kI − A) with αk being
chosen as

αk = (δk, C)
−1∂yDir,k

∂ν
on Γ0.

Thirdly, if (A3) does not hold, then there exists iz ∈ Σ such that

C ∈ ker(izI +B∗)⊥ = R(izI −B). (2.44)

This means that there exists δC ∈ Cn such that

(izI −B)δC = C. (2.45)

Consider y ∈ V the solution of (compare with (2.17))
∫

Ω
(−z2yw̄ +∇y · ∇w̄) dx =

∫

Γ0

hγ0w̄ dσ, ∀w ∈ V, (2.46)

with h ∈ L2(Γ0) arbitrary if z2 6∈ σd(−∆m). If z2 ∈ σd(−∆m), then we fix h satisfying
∫

Γ0

hγ0ϕ̄k dσ = 0, ∀k ∈ N∗ : λ2k = z2. (2.47)

Hence, the Fredholm alternative (see the proof of Theorem 2.3.1) implies the existence of a
solution y of (2.46).

Such a h ∈ L2(Γ0) always exists. Indeed, assume that there exists k ∈ N∗ such that λ2k = z2.
Then we notice that the trace of γ0ϕk, k ∈ N∗ such that λ2k = z2 are linearly independent as
element of L2(Γ0), indeed if there exists αk ∈ C such that

∑

k∈N∗:λ2
k=z2

αkγ0ϕk = 0 in L2(Γ0),

then
ϕ :=

∑

k∈N∗:λ2
k=z2

αkϕk,

is still an eigenvector of −∆m (of eigenvalue z2) and satisfies the additional Dirichlet boundary
condition:

γ0ϕ = 0 in L2(Γ0).

Hence, by Homlgren’s theorem, ϕ = 0 in Ω and therefore αk = 0 for all k ∈ N∗ such that
λ2k = z2. Let {ψk : k ∈ N∗, λ2k = z2} in L2(Γ0) be the orthonormal system constructed by the
Gram-Schmidt process. Then starting with an arbitrary h0 ∈ L2(Γ0), the function h given by

h = h0 −
∑

k∈N∗:λ2
k=z2

(∫

Γ0

h0γ0ψ̄k dσ

)
ψk,

fulfills (2.47).
Returning to (2.46), by Green’s formula, we see that y ∈ V satisfies

{ −z2y −∆y = 0 in Ω,
∂y
∂ν = h on Γ0.
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Now due to iz ∈ Σ and (2.45), we see that

δ := −izyδC + αδ0, (2.48)

with 0 6= δ0 ∈ ker(izI −B) and any function α ∈ L2(Γ0) satisfies

(izI −B)δ = −izCy on Γ0.

Again we distinguish the case (C, δ0) = 0 or not.
i) if (C, δ0) = 0, then we take (0, 0, δ0) and check that it belongs to ker(izI −A).
ii) if (C, δ0) 6= 0, then we take (y, izy, δ)⊤, where y ∈ V is the unique solution of (2.46) (with a
h ∈ L2(Γ0) fulfilling (2.47)) and δ given by (2.48) with

α := (δ0, C)
−1(h+ izy(δC , C)).

In that way, the triple (y, izy, δ)⊤ fulfills

∂y

∂ν
= (δ, C) on Γ0,

and hence belongs to D(A). Again, easy calculations lead to (izI −A)(y, izy, δ)⊤ = 0.
Finally, if (A4) does not hold, then there exists iz ∈ Σ and a non zero δ ∈ Cn such that

(izI −B)δ = 0

with (δ, C) = 0. In that case, we take (0, 0, δ) and easily check that it belongs to ker(izI −A).

2.5 Non uniform stability of A
As before, in [53] and [2] since the problem is one dimensional in space, a perturbation result

(see [44,46]) was used to prove the non uniform stability of the generated C0-semigroup generated
by A. In our case this cannot be used to prove the non uniform stability. But adapting a method
from [50] we can prove a non uniform stability result. This method is based on a frequency domain
approach, namely we use the following result, called Huang-Prüss Theorem (see [23], [43] or [26]):

Lemma 2.5.1 A C0-semigroup etL of contractions on a Hilbert space H is exponentially stable,
i.e., satisfies

||etLU0||H ≤ C e−ωt||U0||H , ∀U0 ∈ H, ∀t ≥ 0,

for some positive constants C and ω if and only if

ρ(L) ⊃ iR, (2.49)

and
sup
β∈R

‖(iβ − L)−1‖ <∞, (2.50)

where ρ(L) denotes the resolvent set of the operator L.
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Our goal is to check that (2.50) does not hold. For that purpose, we introduce the positive
self-adjoint operator −∆R defined by

D(−∆R) = {y ∈ H2(Ω) ∩ V :
∂y

∂ν
+ κy = 0 on Γ0},

where κ = (C,C) = C∗MC > 0, and

−∆Ry = −∆y, ∀y ∈ D(−∆R).

Denote by {λ2R,k}k∈N∗ the (discrete) spectrum of −∆R (repeated according to their multiplicity)
and let yk be the corresponding orthonormalized eigenvectors. Without loss of generality we can
assume that the λR,k’s are positive. As −∆R has a compact resolvent, λR,k goes to +∞ as k
goes to +∞.

The index R was chosen because the boundary

∂y

∂ν
+ κy = 0 on Γ0

is of Robin type.
Recall also the following trace inequality from [20]

∫

Γ0

|u|2 dσ . ‖u‖L2(Ω)‖u‖V , ∀u ∈ V. (2.51)

Indeed, it suffices to apply the standard trace theorem

‖v‖L1(Γ0) . ‖v‖W 1,1(Ω), ∀v ∈W 1,1(Ω),

with v = u2 to find ∫

Γ0

|u|2 dσ . ‖u2‖L1(Ω) + ‖∇u2‖L1(Ω),

and by Leibniz’s rule, Cauchy-Schwarz’s inequality and Poincaré’s inequality we obtain (2.51).

Proposition 2.5.2 For all k ∈ N∗, take µk = λR,k. Then there exists a sequence of elements
Uk ∈ D(A) such that for all k ∈ N∗:

‖Uk‖H ≥ 1, (2.52)

‖(iµk −A)Uk‖H . µ
− 1

2
k . (2.53)

Proof. Fix an arbitrary k ∈ N∗, then we define Uk as follows:

Uk = µ−1
k (yk, iµkyk, δk)

⊤,

where
δk = −Cyk on Γ0

By this choice we check that Uk belongs to D(A) because

(δk, C) = −(Cyk, C) = −κyk =
∂yk
∂ν

on Γ0.
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First, by definition, we clearly have

‖Uk‖H ≥ ‖yk‖L2(Ω) = 1,

which proves (2.52). Now by construction, we see that

(iµk −A)Uk = µ−1
k (0, 0, (iµk −B)δk + iµkCyk). (2.54)

Moreover, we have
(iµk −B)δk + iµkCyk = BCyk.

This identity in (2.54) yields

‖(iµk −A)Uk‖2H = µ−2
k

∫

Γ0

‖BCyk‖2M dσ . µ−2
k

∫

Γ0

|yk|2 dσ.

Applying the trace estimate (2.51) we obtain

‖(iµk −A)Uk‖2H . µ−2
k ‖yk‖V ∼ µ−1

k .

This proves (2.53).

Theorem 2.5.3 The C0-semigroup associated with A in H is not exponentially stable.

Proof. The only non trivial case is the case when (2.49) holds for A. In that case we need to
show that (2.50) does not hold. Indeed, setting ψk = (iµk −A)Uk (that cannot be zero because
(iµk −A) is invertible) we then have

‖(iµk −A)−1‖L(H) = sup
Ψ∈H,Ψ 6=0

‖(iµk −A)−1Ψ‖H
‖Ψ‖H

≥ ‖(iµk −A)−1Ψk‖H
‖Ψk‖H

≥ ‖Uk‖H
‖(iµk −A)Uk‖H

.

Hence, by (2.52) and (2.53), we deduce that

‖(iµk −A)−1‖L(H) &
√
µk,

which implies that (2.50) does not hold and the proof is thus complete.

2.6 Polynomial stability: a frequency domain approach

In this section we prove under some conditions the polynomial stability of the energy of the
semigroup generated by A.We use the following result from [19] (see also [14,15]).

Theorem 2.6.1 Let (T (t))t≥0 be a bounded C0-semigroup on a Hilbert space H with generator
A such that iR ⊂ ρ(A). Then for a fixed α > 0 the following conditions are equivalent:
(i)

‖R(is, A)‖ = O(|s|α), s→ ∞.

(ii)
‖T (t)A−1‖ = O(t−1/α), t→ ∞.
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Consider the system




utt(x, t)−∆u(x, t) = 0 , x ∈ Ω, t > 0,
u(x, t) = 0 , x ∈ Γ1, t > 0,
∂u
∂ν (x, t) = −ut , x ∈ Γ0, t > 0,

(2.55)

Define the operator A corresponding to the system (2.55) by

AU = (v,∆u)⊤, U = (u, v)⊤ ∈ D(A), (2.56)

with

D(A) = {U ∈ H : ∆u ∈ L2(Ω), v ∈ V,
∂u

∂ν
= −v on Γ0}, H = V × L2(Ω).

In the next two propositions we use the exponential or polynomial stability of system (2.55)
to prove a polynomial stability of system (2.2) with a certain decay rate depending on the type
of stability of (2.55).

Proposition 2.6.2 Assume that the energy of system (2.55) is exponentially stable and iR ⊂
ρ(A). Suppose moreover that there exist p > 0 and α > 0 such that for s ∈ R with |s| large
enough we have

ℜ((isI −B)−1C,C) ≥ α

|s|2p , (2.57)

then the energy of the solution of (2.2) satisfies the polynomial decay

E(t) .
1

t1/(p+1/2)
‖U0‖2D(A), ∀t > 0. (2.58)

Proof. For s ∈ R and F = (y1, z1, δ1)
⊤ ∈ H, let UF = (y, z, δ)⊤ = (isI − A)−1F . Then

proceeding as in Proposition 2.2.1 but replacing λ by is in the equation (2.13), we obtain

ais(y, ϕ) = LF (ϕ), ∀ϕ ∈ V = {y ∈ H1(Ω) : y = 0 on Γ1}, (2.59)

where the expressions of aλ and LF are respectively given by the identities (2.14) and (2.15).
For ϕ = y, we find

∫

Ω
−s2yȳdx+

∫

Ω
∇y∇ȳdx+

∫

Γ0

is((isI −B)−1C,C)γ0yγ0ȳds (2.60)

=

∫

Ω
(z1 + isy1)ȳdx+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ȳds.

Taking the imaginary part of (2.60), we get
∫

Γ0

sℜ((isI−B)−1C,C)|γ0y|2ds = ℑ
(∫

Ω
(z1 + isy1)ȳdx+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ȳds

)
.

(2.61)
Taking the modulus of (2.61) and using Cauchy-Schwarz’s inequality, we obtain

|s|
∫

Γ0

ℜ((isI −B)−1C,C)|γ0y|2ds ≤
∫

Ω
|(z1 + isy1)ȳ|dx+

∫

Γ0

∣∣((isI −B)−1(Cγ0y1 + δ1), C
)
γ0ȳ

∣∣ ds

. ‖F‖H‖y‖L2(Ω) + |s|‖F‖H‖y‖L2(Ω) +
1

|s|‖F‖H‖y‖L2(Γ0).
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By (2.57) we deduce that for |s| large enough,

|s|
∫

Γ0

1

|s|2p |γ0y|
2ds . |s|‖F‖H‖y‖L2(Ω) +

1

|s|‖F‖H‖y‖L2(Γ0),

thus
‖y‖2L2(Γ0)

. |s|2p‖F‖H‖y‖L2(Ω) + |s|2p−2‖F‖H‖y‖L2(Γ0), (2.62)

hence by Young’s inequality

‖y‖2L2(Γ0)
. |s|2p‖F‖H‖y‖L2(Ω) + |s|2(2p−2)‖F‖2H. (2.63)

For every s ∈ R and for every f ∈ L2(Ω) let us show that there exists a solution ϕf ∈ H1(Ω) of
the problem





−(s2 +∆)ϕf = f , x ∈ Ω, t > 0,
ϕf (x, t) = 0 , x ∈ Γ1, t > 0,
∂ϕf

∂ν (x, t) = −isϕf , x ∈ Γ0, t > 0,

(2.64)

and satisfying

{ |s|‖ϕf‖L2(Ω) + ‖ϕf‖H1(Ω) . ‖f‖L2(Ω),

|s|‖ϕf‖L2(Γ0) . ‖f‖L2(Ω).
(2.65)

Indeed, by Huang-Prüss Theorem (see [23, 26, 43]) the exponential stability of system (2.55)
implies that there exists M > 0 such that

‖(isI −A)−1‖L(H) ≤M < +∞, (2.66)

for all s ∈ R. Due to (2.66) we have

∀f ∈ L2(Ω), ∀s ∈ R, ∃!uf =

(
ϕf

ψf

)
∈ D(A) s.t. (isI −A)uf =

(
0
f

)

and such that
‖uf‖H ≤M‖f‖L2(Ω).

We deduce that
{
isϕf − ψf = 0
isψf −∆ϕf = f

which gives ψf = isϕf and (s2 +∆)ϕf = −f . Moreover,

‖ϕf‖H1(Ω) + |s|‖ϕf‖L2(Ω) . ‖f‖L2(Ω),

and the first estimate of (2.65) hold. To obtain the third inequality we write
∫

Ω
(−s2ϕf − f)ϕ̄fdx+

∫

Ω
|∇ϕf |2dx =

∫

Ω
∆ϕf ϕ̄fdx+

∫

Ω
|∇ϕf |2dx =

∫

Γ0

∂nϕf ϕ̄fds,
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hence ∫

Γ0

∂nϕf ϕ̄fds =

∫

Ω
(|∇ϕf |2 − s2|ϕf |2 − fϕ̄f )dx. (2.67)

As ψf = isϕf and ∂ϕf

∂ν = −ψf , then taking the imaginary part of (2.67) we get

|s|
∫

Γ0

|ϕf |2ds = |ℑ
∫

Ω
fϕ̄fdx| ≤ ‖f‖L2(Ω)‖ϕf‖L2(Ω) .

‖f‖2L2(Ω)

|s| ,

which proves the second estimate of (2.65).
We first show that

‖y‖L2(Ω) + ‖y‖L2(Γ0) . |s|2p‖F‖H. (2.68)

By replacing ϕ by ϕf in the identity (2.13) and integrating by parts we get
∫

Ω
−s2yϕ̄fdx−

∫

Ω
y∆ϕ̄fdx+

∫

Γ0

y
∂ϕ̄f

∂ν
ds+

∫

Γ0

is
(
(isI −B)−1C,C

)
γ0yγ0ϕ̄fds.

=

∫

Ω
(z1 + isy1)ϕ̄fdx+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ϕ̄fds.

We deduce that
∫

Ω
yf̄dx =

∫

Γ0

isyϕ̄fdx+

∫

Ω
(z1 + isy1)ϕ̄fdx+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ϕ̄fds

−
∫

Γ0

is
(
(isI −B)−1C,C

)
γ0yγ0ϕ̄fds(2.69)

Take f = y in (2.69) to obtain
∫

Ω
|y|2dx =

∫

Γ0

isyϕ̄ydx+

∫

Ω
(z1 + isy1)ϕ̄ydx+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ϕ̄yds

−
∫

Γ0

is
(
(isI −B)−1C,C

)
γ0yγ0ϕ̄yds.

Using Cauchy-Schwarz inequality together with (2.65), we obtain for |s| large enough
∫

Ω
|y|2dx . ‖y‖L2(Γ0)‖y‖L2(Ω) + ‖F‖H‖y‖L2(Ω).

By Young’s inequality, we deduce that

‖y‖2L2(Ω) . ‖y‖2L2(Γ0)
+ ‖F‖2H. (2.70)

Using this estimate in (2.63), we get

‖y‖2L2(Γ0))
. |s|2p‖F‖H(‖y‖L2(Γ0) + ‖F‖H) + |s|2(2p−2)‖F‖2H,

and again by Young’s inequality, we obtain

‖y‖2L2(Γ0))
. |s|4p‖F‖2H.
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By (2.70) we deduce that
‖y‖2L2(Ω) . |s|4p‖F‖2H,

which proves (2.68). It follows that

‖z‖2L2(Ω) = ‖isy − y1‖2L2(Ω) ≤ |s|4p+2‖F‖2H.

Moreover, by the expression (2.11) and (2.68), we get

‖δ‖(L2(Γ0))n .
1

|s|(‖F‖H + |s|‖y‖L2(Γ0)) . |s|2p‖F‖H.

We further have ∫

Ω
|∇y|2dx . |s|4p+2‖F‖2H.

Indeed, by (2.60), we have
∫

Ω
|∇y|2dx =

∫

Ω
s2|y|2dx−

∫

Γ0

is((isI −B)−1C,C)|γ0y|2ds+
∫

Ω
(z1 + isy1)ȳdx

+

∫

Γ0

(
(isI −B)−1(Cγ0y1 + δ1), C

)
γ0ȳds

. |s|2‖y‖2L2(Ω) + ‖y‖2L2(Γ0)
+ |s|‖F‖H‖y‖L2(Ω) +

1

|s|‖F‖H‖y‖L2(Γ0)

. |s|4p+2‖F‖2H + |s|4p‖F‖2H + |s|2p+1‖F‖2H + |s|2p−1‖F‖2H.

Hence we have shown that
‖UF ‖H . |s|2p+1‖F‖H,

for |s| large enough. This means that

‖(is−A)−1‖ = O(|s|2p+1), s→ ∞,

and it follows by Theorem 2.6.1 that

‖U(t)‖H .
1

t1/(2p+1)
‖U0‖D(A),

which proves (2.58).

Proposition 2.6.3 Suppose as in Proposition 2.6.2 that there exist p > 0 and α > 0 such that
for s ∈ R with |s| large enough, (2.57) holds and that iR ⊂ ρ(A). Assume moreover that the
energy of system (2.55) is polynomially stable with

‖eAtA−1‖ = O(t−1/α), t→ ∞,

for some α > 0. Then the energy of the solution of (2.2) satisfies a polynomial decay

E(t) .
1

t1/(p+
α+1
2

)
‖U0‖2D(A), ∀t > 0. (2.71)
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Proof. Proceeding as in the proof of Proposition 2.6.2, for F ∈ H and UF ∈ D(A) defined
therein we obtain (2.60), (2.61), (2.62), and (2.63). In addition, there exists ϕf ∈ V satisfying
(2.64) and

{ |s|‖ϕf‖L2(Ω) + ‖ϕf‖H1(Ω) . |s|α‖f‖L2(Ω),

|s|‖ϕf‖L2(Γ0) . |s|α2 ‖f‖L2(Ω).
(2.72)

Indeed, since the energy of system (2.55) is polynomially stable then using Theorem 2.6.1,

∀f ∈ L2(Ω), ∀s ∈ R, ∃!uf = (ϕf , ψf )
⊤ ∈ D(A) s.t. (isI −A)uf = (0, f)⊤

with
‖uf‖H ≤M |s|α‖f‖L2(Ω),

for some M > 0. As before, we deduce that
{ ‖y‖L2(Ω) . |s|2p|s|α‖F‖H

‖y‖L2(Γ0) . |s|2p|s|α2 ‖F‖H
(2.73)

Replacing f = y in (2.69) and using the estimates (2.72) together with Young’s inequality, we
obtain

‖y‖2L2(Ω) . |s|α
(
‖y‖2L2(Γ0)

+ |s|α‖F‖2H
)
. (2.74)

Then by (2.63), we get
‖y‖2L2(Γ0)

. |s|4p+α‖F‖2H.
Due to (2.74),

‖y‖2L2(Ω) . |s|4p+2α‖F‖2H,
and thus

‖z‖2L2(Ω) = ‖isy − y1‖2L2(Ω) ≤ |s|4p+2α+2‖F‖2H.
By the expression (2.11) and (2.73), we get

‖δ‖(L2(Γ0))n .
1

|s|(‖F‖H + |s|‖y‖L2(Γ0)) . |s|2p+α
2 ‖F‖H.

Using (2.60) and (2.73), we have
∫

Ω
|∇y|2dx . |s|4p+2α+2‖F‖2H.

Henceforth,
‖(is−A)−1‖ = O(|s|2p+α+1), s→ ∞,

and the estimate (2.71) follows from Theorem 2.6.1.
Before going on, let us give sufficient conditions on B and C that guarantee that (2.57) holds.

Proposition 2.6.4 Suppose that B,C and M have constant scalar entries. Let B∗ be the adjoint
of B with respect to (·, ·)Cn , B0 = B −R and R = B+B∗

2 . Moreover, assume that

m = min{p ∈ N : P (Bp
0C) 6= 0} (2.75)

exists, with P the projection from Cn into (kerR)⊥. Then there exists α > 0 such that for |s|
large enough, we have

ℜ((isI −B)−1C,C) ≥ α

|s|2(m+1)
.
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Proof. Indeed, we have RBlC = 0 for all l < m and RBmC = RBm
0 C. Then, since R is

self-adjoint and RC = RPC, we may write

−(R
∞∑

j=0

(−i)j+1 B
j

sj+1
C,

∞∑

l=0

(−i)l+1 B
l

sl+1
C) = −((−i)m+1 B

m

sm+1
C,R(−i)m+1 B

m

sm+1
C) +O(|s|−(2m+3))

= −((−i)m+1PB
m
0

sm+1
C, (−i)m+1R

PBm
0

sm+1
C) +O(|s|−(2m+3)).

As

ℜ((isI −B)−1C,C) = ℜ((isI −B)−1C, (isI −B)(isI −B)−1C)

= −(R(isI −B)−1C, (isI −B)−1C) = −(R
∞∑

j=0

(−i)j+1 B
j

sj+1
C,

∞∑

l=0

(−i)l+1 B
l

sl+1
C),

we get

ℜ((isI −B)−1C,C) = −(RP (Bm
0 C), P (B

m
0 C))

s2(m+1)
+O(|s|−(2m+3)).

But −R defines a norm on (kerR)⊥, thus −(RP (Bm
0 C), P (B

m
0 C)) & ‖P (Bm

0 C)‖2 > 0.

Remark 2.6.5 The semigroup eAt is exponentially stable for domains with smooth boundary (of
class C∞) satisfying the geometric control condition (G.C.C)(see [12]), as well as for domains
of class C2 satisfying the vector field assumptions described in [27] (see (i),(ii),(iii) of Theorem
1 in [27]). Moreover, in Theorem 1.2 of [28] the authors prove the exponential stability of eAt

for smooth domains under weaker geometric conditions than in [27] (without (ii) of Theorem 1).

Remark 2.6.6 Consider the system (2.55) on the square [0, 1] × [0, 1] and suppose that Γ0 =
{1} × [0, 1]. Then similarly as in [40] we deduce that eAt is polynomially stable with ‖eAtU0‖2 .
1
t ‖U0‖2D(A), for all U0 ∈ D(A). Then if the assumptions of Proposition 2.6.3 are satisfied, then

‖eAtU0‖2 . t
− 1

p+3
2 ‖U0‖2D(A), for all U0 ∈ D(A).

2.7 Dissipation on the whole boundary

Here we assume that Γ1 = ∅. Thus Γ = Γ0 = ∂Ω and system (2.2) becomes




ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
∂y
∂ν (x, t) = (δ(x, t), C) , x ∈ Γ0, t > 0,
δt(x, t) = Bδ(x, t)− Cyt(x, t) , x ∈ Γ0, t > 0.

(2.76)

Let V = H1(Ω), then H is given by

H = V × L2(Ω)× (L2(Γ0))
n
,

and is now endowed with the following inner product

((y, z, δ), (y1, z1, δ1))H =

∫

Ω
yȳ1dx+

∫

Ω
∇y∇ȳ1dx+

∫

Ω
zz̄1dx+

∫

Γ0

(δ, δ1)dx.

57



2 The multidimensional wave equation with generalized acoustic boundary conditions

We define the operator (A, D(A)) on H as in chapter 1,

AU = (z,∆y,Bδ − Cγ0z)
⊤, for U = (y, z, δ)⊤ ∈ D(A),

where D(A) = {U ∈ H : ∆y ∈ L2(Ω), z ∈ V, ∂y∂ν = C⊺Mδ on Γ0}. Remark that A is not
dissipative with respect to the norm defined on H. Indeed,

ℜ(AU,U)H =

∫

Γ0

ℜ(Bδ, δ)Rnds+ ℜ
∫

Ω
zȳdx.

To overcome this difficulty we need further assumptions on B and C.
We actually suppose that B is invertible on the whole boundary and consider the following cases:
either

∫
Γ0
((−B)−1C,C)ds 6= 0 or

∫
Γ0
((−B)−1C,C)ds = 0.

Before going on, recall that LF defined by (2.15) with λ = 0 is given by

LF (ϕ) =

∫

Ω
zϕ̄dx+

∫

Γ

(
(−B)−1(Cy + δ), C

)
γ0ϕ̄ds, ∀ϕ ∈ H1(Ω),

when F = (y, z, δ)⊤ ∈ H. For shortness, we further set

L1(F ) = LF (1).

Note that
L1(AU) = 0, ∀U ∈ D(A).

2.7.1 The first case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole
boundary and

∫
Γ(B

−1C,C)ds is nonzero. Then we introduce the following subspace H̃ of H:

H̃ = {F ∈ H : L1(F ) = 0},

endowed with the inner product (2.4), and the operator (Ã, D(Ã)) defined by

D(Ã) = H̃ ∩D(A), ÃU = AU, ∀U ∈ D(Ã). (2.77)

Proposition 2.7.1 The operator Ã is m-dissipative.

Proof. The dissipativity of Ã directly follows from the property (2.9). Proceeding as in the
proof of Proposition 2.2.1, we apply Lax-Milgram lemma to get the existence of a unique solution
y ∈ H1(Ω) of (2.13), and deduce the surjectivity of λI − A from D(A) onto H for all λ > 0.
Moreover, we can easily check that the preimage U = (y, z, δ)⊤ of F = (y1, z1, δ1)

⊤ ∈ H̃ by
λI −A is also in H̃, thus proving that λI − Ã is surjective from D(Ã) onto H̃.

Proposition 2.7.2 The operator Ã is one-to-one and onto.

Proof. We first show that 0 6∈ σd(Ã). Suppose that Ã(y, z, δ)⊤ = (z,∆y,Bδ − Cz)⊤ = 0 for
some (y, z, δ)⊤ ∈ D(Ã), then z = 0 and as B is invertible δ = 0 thus ∂ny = 0. But ∆y = 0
in Ω, then multiplying by y and integrating by parts we deduce that y is constant in Ω. Since
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(y, z, δ)⊤ ∈ H̃, we get
∫
Γ0
(B−1C,C)yds = 0 and we conclude that y = 0.

Let us now show that Ã is surjective from D(Ã) onto H̃. Let F = (y1, z1, δ1)
⊤ ∈ H̃. Then F

satisfies LF (1) = 0 and it follows that for all ϕ̇ ∈ H1(Ω)/C the expression LF (ϕ̇) = LF (ϕ), with
ϕ ∈ ϕ̇ is a well defined linear bounded form on the quotient space H1(Ω)/C endowed with the
norm ‖ϕ̇‖ = ‖∇ϕ‖L2(Ω). We also define the form a on H1(Ω)/C×H1(Ω)/C by a(ẏ, ϕ̇) = a0(y, ϕ),
y ∈ ẏ, ϕ ∈ ϕ̇. Moreover, a being coercive on H1(Ω)/C, Lax-Milgram lemma then implies the
existence of a unique solution ẏ ∈ H1(Ω)/C of

a(ẏ, ϕ̇) = LF (ϕ̇), ∀ϕ̇ ∈ H1(Ω)/C.

Choose any y ∈ ẏ, then it satisfies
∫

Ω
∇y∇ϕ̄dx =

∫

Ω
z1ϕ̄dx+

∫

Γ0

(
(−B)−1(Cy1 + δ1), C

)
ϕ̄ds, ∀ϕ ∈ H1(Ω). (2.78)

In particular, for ϕ ∈ D(Ω) we get −∆y = z1 ∈ L2(Ω). Moreover, by replacing z1 by −∆y in
(2.78), we deduce that ∂νy = ((−B)−1(Cy1+δ1), C). Set δ̃ = B−1(Cy1+δ1), z̃ = y1, ỹ = −y+β,
with β ∈ C fixed below. Thus Bδ̃ − Cz̃ = δ1 and

∆ỹ = −∆y = z1 in Ω,

and
∂ỹ

∂ν
= −∂y

∂ν
= (δ̃, C) on Γ.

Since
∫
Γ(B

−1C,C)ds 6= 0, we may choose

β =
1∫

Γ(B
−1C,C)ds

(∫

Ω
y1dx+

∫

Γ

(
B−1

(
Cy −B−1(Cy1 + δ1)

)
, C

)
ds

)

to get ∫

Ω
z̃dx+

∫

Γ
((−B)−1(Cỹ + δ̃), C)ds = 0.

Henceforth, Ũ = (ỹ, z̃, δ̃)⊤ ∈ D(Ã) and ÃŨ = F .

Corollary 2.7.3 0 ∈ σd(A) with multiplicity 1, its associated eigenvector is (1, 0, 0)⊤.

Proof. Clearly A(y, z, δ)⊤ = (0, 0, 0)⊤ if and only if y is constant in Ω, z = 0 and δ = 0, hence
0 ∈ σd(A) with a geometric multiplicity equal to 1. As

L1((1, 0, 0)
⊤) = −

∫

Γ
(B−1C,C)ds 6= 0,

(1, 0, 0)⊤ does not belong to the range of A and the algebraic multiplicity of 0 is also equal to 1.
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2.7.2 The second case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole
boundary and

∫
Γ0
(B−1C,C)ds = 0. For simplicity we further assume that B and C have real

entries. In this setting as (B−1C,C) ≤ 0, we deduce that

(B−1C,C) = 0 on Γ. (2.79)

Inspired by Example 1 below, we also suppose that

|Ω| −
∫

Γ
(B−2C,C) ds 6= 0. (2.80)

Under these assumptions, we see that LF and L1 defined before are reduced to

LF (ϕ) =

∫

Ω
zϕ̄dx+

∫

Γ

(
(−B)−1δ, C

)
γ0ϕ̄ds, ∀ϕ ∈ H1(Ω),

and

L1(F ) =

∫

Ω
zdx−

∫

Γ

(
B−1δ, C

)
ds,

for F = (y, z, δ) ∈ H. We also introduce the functional

L2(F ) =

∫

Ω
ydx−

∫

Γ

(
B−2(Cγ0y + δ), C

)
ds,

when F = (y, z, δ) ∈ H. Note that

L2(AU) = L1(U), ∀U ∈ D(A),

and that our assumption (2.80) implies that L2((1, 0, 0)
⊤) 6= 0.

Now we introduce the following subspace H̃ of H:

H̃ = {U ∈ H : L1(U) = L2(U) = 0},

still endowed with the inner product (2.4) and the operator (Ã, D(Ã)) defined by (2.77).

Proposition 2.7.4 The operator Ã is m-dissipative.

Proof. We proceed using the same proof as that of Proposition 2.7.1. Noting in addition that
L2(F ) = 0 and L1(U) = 0 imply that L2(U) = 0, the proof is thus complete.

Proposition 2.7.5 The operator Ã is one-to-one and onto.

Proof. Suppose that Ã(y, z, δ)⊤ = (z,∆y,Bδ − Cz)⊤ = 0 for some (y, z, δ)⊤ ∈ D(Ã). Then,
as before, we get (y, z, δ)⊤ = c(1, 0, 0)⊤ for some constant c. Since (y, z, δ)⊤ ∈ H̃, we conclude
that c = 0. Therefore, 0 6∈ σd(Ã).
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Let us now show that Ã is surjective from D(Ã) onto H̃. Let F = (y1, z1, δ1)
⊤ ∈ H̃. Then

F satisfies LF (1) = 0 and as before there exists a solution y ∈ H1(Ω) of (2.78). By setting
δ̃ = B−1(Cy1 + δ1), z̃ = y1, ỹ = −y + β, with β ∈ C fixed below, we find that

A(ỹ, z̃, δ̃) = F.

Furthermore, the assumption L2(F ) = 0 guarantees that L1(ỹ, z̃, δ̃) = 0, while β is fixed in such
a way that

L2((ỹ, z̃, δ̃)
⊤) = L2((−y, z̃, δ̃)⊤) + βL2((1, 0, 0)

⊤) = 0.

Corollary 2.7.6 0 ∈ σd(A) with geometric multiplicity 1 and algebraic multiplicity 2, its asso-
ciated eigenvector is (1, 0, 0)⊤ and its generalized eigenvector is (0, 1, B−1C)⊤.

Proof. The conclusion follows from the fact that

A(0, 1, B−1C)⊤ = (1, 0, 0)⊤,

and that
L1((0, 1, B

−1C)⊤) = L2((1, 0, 0)
⊤) 6= 0.

Remark 2.7.7 If (2.80) does not hold, then it equivalently means that L1((0, 1, B
−1C)⊤) = 0,

and in that case, we directly deduce that the algebraic multiplicity of 0 is greater than 3. For
shortness, we let the remaining analysis to the reader.

2.7.3 General considerations

From now on, we suppose that we are either in the first case or in the second one.

Proposition 2.7.8 Suppose that the assumptions (A1), (A2), (A3) and (A4) of Proposition 2.4.2
hold. Then σd(A) ∩ iR∗ = ∅. Consequently, σd(Ã) ∩ iR∗ = ∅.

Proof. Same proof as Proposition 2.4.2.

Proposition 2.7.9 If λ 6∈ Σ, then λ−A is a Fredholm operator of index zero.

Proof. Same proof as that of point (ii) of Theorem 2.3.1 but replacing V by H1(Ω).

Remark 2.7.10 If λ ∈ Σ, then λ − Ã is singular. Indeed, since λ − A is singular then by
Theorem 2.3.1, there exists a sequence (Un)n∈N∗ in D(A) satisfying ‖Un‖H = 1 and

(λI −A)Un → 0, as n→ ∞.

In the first case, let αn = L1(Un)
L1((1,0,0)⊤)

, where Un = (yn, zn, δn)
⊤.We now construct the sequence

(Ũn)n∈N∗ by

Ũn = Un − αn



1
0
0


 .
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In the second case, let

βn =
L1(Un)

L1((0, 1, B−1C)⊤)

and

αn =
L2(Un)− βnL2((0, 1, B

−1C)⊤)
L2((1, 0, 0)⊤)

.

In this case, we introduce the sequence (Ũn)n∈N∗ defined by

Ũn = Un − αn



1
0
0


− βn




0
1

B−1C


 .

Then (Ũn)n ⊂ D(Ã) and αn → 0, βn → 0 as n → ∞ due to Lemma 3.3 and the property

(2.9). Consequently, (λI−Ã)Ũn → 0 and ‖Ũn‖H̃ → 1. Therefore, taking Vn = Ũn

‖Ũn‖H̃
, we obtain

(Vn)n ⊂ D(Ã) satisfying ‖Vn‖H̃ = 1 and

(λI −A)Vn → 0, as n→ ∞.

Proposition 2.7.11 If (A1) to (A4) of Proposition 2.4.2 hold and if Σ ∩ iR is countable, then
the C0-semigroup associated with Ã is strongly stable.

Proof. Due to Proposition 2.7.2 and Proposition 2.7.5, we have 0 ∈ ρ(Ã). Now, let iλ ∈ C \ Σ
with λ nonzero, then due to Proposition 2.7.8 we have iλ 6∈ σd(A). We deduce by Proposition
2.7.9 that iλ ∈ ρ(A). Using the same proof of the invertibility of λI − Ã where λ > 0 of
Proposition 2.7.1 we prove the invertibility of iλ− Ã , and so iλ ∈ ρ(Ã), hence

C \ Σ ∩ iR∗ ⊂ ρ(Ã) ∩ iR∗

and thus
σ(Ã) ∩ iR∗ ⊂ Σ ∩ iR∗.

The next corollary follows directly from the previous Proposition.

Corollary 2.7.12 Let the assumptions of Proposition 2.4.2 be satisfied. Suppose moreover that
Σ ∩ iR∗ = ∅. Then iR∗ ⊂ ρ(Ã)

We define the operator (A,D(A)) onH := H1(Ω)×L2(Ω) as in the previous section. Moreover,
we define the following subspace Ḣ of H

Ḣ = {U ∈ H :

∫

Ω
zdx+

∫

Γ
yds = 0}

endowed with the inner product

((y, z), (y1, z1))Ḣ =

∫

Ω
∇y∇ȳ1dx+

∫

Ω
zz̄1dx,
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and the operator (Ȧ,D(Ȧ)) defined by

D(Ȧ) = Ḣ ∩D(A), ȦU = AU, ∀U ∈ D(Ȧ).

We further define the following initial value problem on Ḣ

Ut = ȦU, U(0) = U0. (2.81)

Proposition 2.7.13 Assume that iR ⊂ ρ(Ã) and that the energy of system (2.81) is exponen-
tially stable. Suppose moreover that there exist p > 0 and α > 0 such that for s ∈ R with |s|
large enough we have

ℜ((isI −B)−1C,C) ≥ α

|s|2p ,

then the energy of the solution of Ut = ÃU,U(0) = U0 ∈ D(Ã), satisfies a polynomial decay

E(t) .
1

t1/(p+1/2)
‖U0‖2D(Ã)

, ∀t > 0. (2.82)

Proof. For f ∈ L2(Ω), we have

(− 1
|∂Ω|

∫
Ω fdx

f

)
∈ Ḣ. Then there exists

(
û0
û1

)
∈ D(Ȧ) satisfying

(λI − Ȧ)

(
û0
û1

)
=

(− 1
|∂Ω|

∫
Ω fdx

f

)

and

‖(û0, û1)⊤‖Ḣ ≤ ‖(− 1

|∂Ω|

∫

Ω
fdx, f)⊤‖Ḣ .

Take

u0 = û0 +
1

is|∂Ω|

∫

Ω
fdx, u1 = û1.

Then

(λI −A)

(
u0
u1

)
=

(
0
f

)
.

Setting ϕf = u0, we get (2.65). Following the same proof of Proposition 2.6.2 we obtain the
same estimates on the resolvent in the space H̃. We conclude by Theorem 2.6.1 as iR ⊂ ρ(Ã).

Remark 2.7.14 The semigroup eȦt is exponentially stable if the boundary Γ is smooth enough as
it then satisfies the geometric control condition (G.C.C)(see [12]), or if Ω is of class C2 satisfying
the vector field assumptions described in [27] (more precisely (ii) and (iii) of Theorem 1 in [27]).

Proposition 2.7.13 finally allows to obtain the asymptotic behavior of the solution of (2.76).
To state properly the result, we again need to distinguish between the first and the second case.

Proposition 2.7.15 Let the assumptions of Proposition 2.7.13 be satisfied, then the following
statements hold:
1. In the setting of case 1, the solution U = (y, yt, δ)

⊤ of (2.76) with U0 ∈ D(A) satisfies

‖U(t)− α(1, 0, 0)⊤‖2H .
1

t1/(p+1/2)
‖U0‖2D(A),
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where

α =
L1(U0)

L1((1, 0, 0)⊤)
.

2. In the setting of case 2, the solution U = (y, yt, δ)
⊤ of (2.76) with U0 = (y0, y1, δ0)

⊤ ∈ D(A)
satisfies

‖U(t)− α(1, 0, 0)⊤ − β(t, 1, B−1C)⊤‖2H .
1

t1/(p+1/2)
‖U0‖2D(A),

where

β =
L1(U0)

L1((0, 1, B−1C)⊤)
and α =

L2(U0)− βL2((0, 1, B
−1C)⊤)

L2((1, 0, 0)⊤)
.

Proof. In the first case, given U0 ∈ D(A) we set

Ũ0 = U0 − α(1, 0, 0)⊤,

with α defined above. The choice of α guarantees that Ũ0 belongs to D(Ã). Hence applying
Proposition 2.7.13, we see that the solution Ũ of

Ũt = ÃŨ , Ũ(0) = Ũ0, (2.83)

satisfies (2.82). The conclusion follows by noticing that

U(t) = Ũ(t) + α(1, 0, 0)⊤,

is solution of (2.7),
Ut = AU, U(0) = U0.

We proceed similarly in the second case, namely we set

Ũ0 = U0 − α(1, 0, 0)⊤ − β(0, 1, B−1C)⊤,

α and β being chosen such that L1(Ũ0) = L2(Ũ0) = 0. As before the solution Ũ of (2.83) satisfies
(2.82), and the conclusion follows by noticing that

U(t) = Ũ(t) + α(1, 0, 0)⊤ + β(t, 1, B−1C)⊤,

is solution of (2.7).

2.8 Polynomial stability: the multiplier method and the energy

method

In this section we assume that

Γ̄0 ∩ Γ̄1 = φ, and meas Γ1 6= 0,

and that there exists a point x0 ∈ Rn such that

Γ1 = {x ∈ Γ|(x− x0).ν ≤ 0},

Γ0 = {x ∈ Γ|(x− x0).ν ≥ a > 0},
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for some constant a > 0, where ν = ν(x) denotes the unit outward normal vector at x ∈ Γ.
We further suppose that B and C have constant and real entries (for variable entries, see
Remark 2.8.10). Under these assumptions we are able to give a better energy decay rate
than that given in the previous section once imposing certain algebraic conditions on B and
C. Remark also that those geometrical conditions on the boundary exclude simply connected
domains. Moreover, we set q(x) = (x−x0), for all x ∈ Ω̄ and denote by R0 = ‖q‖∞ = sup

x∈Ω
‖q(x)‖.

We first prove a result from interpolation theory which later will allow us to deduce from the
polynomial decay for certain regular initial data a polynomial decay of energy for less regular
initial data (see also Proposition 3.1 in [14]).

Proposition 2.8.1 Let (A,D(A)) be a m-dissipative generator of a C0-semigroup of contractions
on H, with A−1 bounded in a Hilbert space H with norm ‖ · ‖, let U0 ∈ D(A) and m be a positive

integer. Suppose that ‖eAtV0‖2 . 1
t

m∑

j=0

‖AjV0‖2 for all V0 ∈ D(Am), then

‖eAtU0‖2 .
1

t
1
m

(‖U0‖2 + ‖AU0‖2). (2.84)

Proof. For m = 1, the result is clear.
For m > 1, applying Theorem 2.6 of [33] we get

‖eAt‖L([H,D(Am)]θ;H)) ≤ ‖eAt‖1−θ
L(H)‖e

At‖θL(D(Am);H)), ∀θ ∈ (0, 1).

Due to Corollary 4.30 of [33], we have

[H,D(Am)] 1
m

= D(A).

By the assumptions we have ‖eAt‖L(D(Am);H)) ≤ C

t
1
2
. Moreover, eAt is a family of contractions

on H, thus ‖eAt‖L(H) ≤ 1 and hence

‖eAt‖L(D(A);H) ≤ ‖eAt‖
1
m

L(D(Am);H)) ≤
1

t
1

2m

,

which yields (2.84).

For j ∈ N and U0 ∈ D(Aj), by Remark 2.2.4, for all t ≥ 0, we can define Ej(t) =
1
2‖∂

j
tU(t)‖2H.

For U0 ∈ D(Aj+1), computing its derivative we obtain

d

dt
Ej(t) = (A∂jtU, ∂jtU) =

∫

Γ0

(B∂jt δ, ∂
j
t δ)ds =

∫

Γ0

∂jt δ
⊺MB∂jt δds, (2.85)

that is non positive. Hence this energy is also non increasing.

Proposition 2.8.2 For (y0, z0, δ0)
⊺ ∈ D(A), denote by (y, yt, δ) the solution of system (2.2) and

define F0(t) by

F0(t) =

∫

Ω

(
ytq · ∇y +

d− 1

2
yyt

)
dx,
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where we recall that q(x) = x− x0. Then the derivative of F0 is given by

d

dt
F0(t) = −1

2

∫

Ω
(|yt|2 + |∇y|2)dx− 1

2

∫

Γ0

q · ν|∇y|2ds

+

∫

Γ0

C⊺Mδq · ∇yds+ 1

2

∫

Γ1

q · ν|∇y|2ds

+
1

2

∫

Γ0

q · ν|yt|2ds+
d− 1

2

∫

Γ0

C⊺Mδyds.

Proof. We have

d

dt
F0(t) =

d

dt

∫

Ω
ytq · ∇ydx+

d− 1

2

d

dt

∫

Ω
yytdx

=

∫

Ω
yttq · ∇ydx+

∫

Ω
ytq · ∇ytdx+

d− 1

2

(∫

Ω
yyttdx+

∫

Ω
|yt|2dx

)
.

As ytt = ∆y, and using Green’s formula we get
∫

Ω
yttq · ∇ydx =

∫

Ω
∆yq · ∇ydx =

∫

Γ

∂y

∂ν
∇y · qds−

∫

Ω
∇y · ∇(q · ∇y)dx

=

∫

Γ0

∂y

∂ν
∇y · qds+

∫

Γ1

(∇y · ν)(∇y · q)ds−
∫

Ω

d∑

i=1

∂y

∂xi

∂

∂xi




d∑

j=1

(xj − xj0)
∂y

∂xj


 dx

=

∫

Γ0

∂y

∂ν
∇y · qds+

∫

Γ1

|∇y|2ν · qds−
∫

Ω
|∇y|2 − 1

2

∫

Ω
q · ∇|∇y|2dx.

Using Green’s formula and as yt = 0 on Γ1, we get
∫

Ω
ytq · ∇ytdx =

1

2

∫

Ω
q · ∇|yt|2dx = −1

2

∫

Ω
divq|yt|2dx+

1

2

∫

Γ0

q · ν|yt|2ds,

similarly substituting divq by d, we obtain
∫

Ω

1

2
q · ∇|∇y|2dx = −d

2

∫

Ω
|∇y|2dx+

1

2

∫

Γ0

q · ν|∇y|2ds+ 1

2

∫

Γ1

q · ν|∇y|2ds. (2.86)

Moreover, as y = 0 on Γ1, we have
∫

Ω
yyttdx =

∫

Ω
y∆ydx = −

∫

Ω
|∇y|2dx+

∫

Γ0

∂y

∂ν
yds.

Finally, by replacing (2.86) in the expression of
∫
Ω yttq · ∇ydx and summing all the above equal-

ities, we obtain

d

dt
F0(t) =

(
d− 1

2
− d

2

)∫

Ω
|yt|2dx+

(
d

2
− 1− d− 1

2

)∫

Ω
|∇y|2dx− 1

2

∫

Γ0

q.ν|∇y|2ds

+

∫

Γ0

∂y

∂ν
q.∇yds+ 1

2

∫

Γ1

q.ν|∇y|2ds

+
1

2

∫

Γ0

q.ν|yt|2dx+
d− 1

2

∫

Γ0

∂y

∂ν
yds.

Just substituting ∂y
∂ν = C⊺Mδ, we get the required result.
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Proposition 2.8.3 Suppose that there exist k > 0, k1 > 0, a matrix Q ∈Mn(R), and a positive
integer m such that RBqC = 0 for all 0 ≤ q ≤ m− 2 and

(C⊺(Bδ − Cv))2 ≤ k


‖δ‖2 −

m−1∑

j=1

(
RBjδ, Bjδ

)
−

(
RBm−1(Bδ − Cv), Bm−1(Bδ − Cv)

)

 ,

(2.87)
δ⊺(B⊺Q+QB)δ ≤ k(−Rδ, δ)− k1‖δ‖2, (2.88)

for all

(
δ
v

)
∈ Rn × R, where R = B+B∗

2 , B∗ being the adjoint of B with respect to the defined

inner product (note that (Rδ, δ) = (Bδ, δ)).
Assume moreover that Q satisfies

(C⊺(Q⊺ +Q)(Bδ − Cv))2 ≤ k


−

m−1∑

j=0

(
RBjδ, Bjδ

)
−

(
RBm−1(Bδ − Cv), Bm−1(Bδ − Cv)

)

 .

(2.89)
For (y0, z0, δ0)

⊺ ∈ D(Am+1), define

G0(t; y, δ) =

∫

Γ0

δ⊺Qδds+

∫

Γ0

α⊺δyds,

with α = Q⊺C +QC, and the Lyapunov functional

L0(t) = N2
m∑

j=0

Ej(t) +
√
NG0(t) + F0(t),

with N > 0. Then for N large enough, there exists C > 0 (depending on N) such that

d

dt
L0(t) ≤ −CE0(t). (2.90)

Proof. Deriving G0 we obtain

d

dt
G0 =

∫

Γ0

(δt
⊺Qδ + δ⊺Qδt + α⊺δty + α⊺δyt)ds

As δt = Bδ − Cyt, we deduce that

d

dt
G0 =

∫

Γ0

(δ⊺(B⊺Q+QB)δ + yt(α
⊺ − C⊺Q− C⊺Q⊺)δ + α⊺δty)ds

As α = Q⊺C +QC, we get

d

dt
G0 =

∫

Γ0

(δ⊺(B⊺Q+QB)δ + α⊺δty)ds. (2.91)

By (2.85), (2.91), and the expression of the derivative of F0, we have

d

dt
L0(t) = N2

∫

Γ0

(Bδ, δ)ds+N2
m∑

j=1

∫

Γ0

(B∂jt δ, ∂
j
t δ)ds+

√
N

∫

Γ0

(δ⊺(B⊺Q+QB)δ + α⊺δty)ds

−1

2

∫

Ω
(|yt|2 + |∇y|2)dx− 1

2

∫

Γ0

q.ν|∇y|2ds+
∫

Γ0

C⊺Mδq.∇yds+ 1

2

∫

Γ1

q.ν|∇y|2ds

+
1

2

∫

Γ0

q.ν|yt|2ds+
d− 1

2

∫

Γ0

C⊺Mδyds.
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To deal with the term
∫
Γ0
q.ν|yt|2ds, we first compute yt using the condition δt = Bδ − Cyt

on Γ0, multiplying by C⊺ we obtain

yt = (C⊺C)−1C⊺Bδ − (C⊺C)−1C⊺δt on Γ0. (2.92)

Using a trace theorem, equality (2.92) together with Young’s and Poincaré’s inequalities we
deduce that for all ε1 > 0, ε2 > 0, ε3 > 0 we have

∫

Γ0

q.ν|yt|2ds ≤
∫

Γ0

q.ν|(C⊺C)−1C⊺Bδ − (C⊺C)−1C⊺δt|2ds (2.93)

≤
∫

Γ0

2R0

[
(C⊺C)−2(C⊺Bδ)2 + (C⊺C)−2(C⊺δt)

2
]
ds,

√
N

∫

Γ0

α⊺δtyds ≤ Nε1
2

∫

Γ0

(α⊺δt)
2ds+

Cγ

2ε1

∫

Ω
|∇y|2dx, (2.94)

∫

Γ0

C⊺Mδq.∇yds ≤
∫

Γ0

[
ε2
2
(C⊺Mδ)2 +

R2
0

2aε2
q.ν|∇y|2

]
ds, (2.95)

d− 1

2

∫

Γ0

C⊺Mδyds ≤ d− 1

2

ε3
2

∫

Γ0

(C⊺Mδ)2ds+
d− 1

2

Cγ

2ε3

∫

Ω
|∇y|2dx. (2.96)

Choosing ε1, ε2, ε3 so that we get 1
8

∫
Ω |∇y|2dx, 1

4

∫
Γ0
q.ν|∇y|2ds, and 1

8

∫
Ω |∇y|2dx on the right

hand side of the inequalities (2.94), (2.95) and (2.96) respectively, and as 1
2

∫
Γ1
q.ν|yt|2ds ≤ 0 we

thus deduce that

d

dt
L0(t) ≤ N2

∫

Γ0

(Rδ, δ)ds+N2
m∑

j=1

∫

Γ0

(R∂jt δ, ∂
j
t δ)ds+K1

∫

Γ0

N(α⊺δt)
2ds

+
√
N

∫

Γ0

(δ⊺(B⊺Q+QB)δ)ds− 1

4

∫

Ω
(|yt|2 + |∇y|2)dx

+R0(C
⊺C)−2

∫

Γ0

(C⊺δt)
2ds+R0(C

⊺C)−2

∫

Γ0

(C⊺Bδ)2ds+K2

∫

Γ0

(C⊺Mδ)2ds,

where K1,K2 are positive constants. But ∂jt δ = Bjδ −
j∑

i=1

∂ityB
j−iC, thus for all 1 ≤ j ≤ m− 1

and for all 1 ≤ i ≤ j we have 0 ≤ j − i ≤ j − 1 ≤ m − 2 and thus RBj−iC = 0, and for all
2 ≤ i ≤ m we get RBm−iC = 0 as m − i ≤ m − 2. We deduce that for all 1 ≤ j ≤ m − 1,
(R∂jt δ, ∂

j
t δ) = (RBjδ, Bjδ) and (R∂mt δ, ∂

m
t δ) = (RBmδ−RBm−1Cyt, B

mδ−Bm−1Cyt). Hence,
due to assumptions (2.87),(2.88), (2.89) we have,

(C⊺δt)
2 ≤ k




m∑

j=1

(−R∂jt δ, ∂jt δ) + ‖δ‖2

 , (2.97)

δ⊺(B⊺Q+QB)δ ≤ k(−Rδ, δ)− k1‖δ‖2, (2.98)

(C⊺(Q⊺ +Q)δt)
2 ≤ −k

m∑

j=0

(R∂jt δ, ∂
j
t δ). (2.99)

Clearly, we have (C⊺Bδ)2 + (C⊺Mδ)2 . ‖δ‖2. Choosing N large enough we deduce that (2.90)
holds.

68



2 The multidimensional wave equation with generalized acoustic boundary conditions

Remark 2.8.4 Substitute δ = 0Rn , v = 1 in (2.87) we deduce that (−RBm−1C,Bm−1C) > 0.
Moreover, (2.88) implies that 0 6∈ σ(B), otherwise there would exist δ 6= 0 such that Bδ = 0 and
thus (2.88) gives

0 ≤ −k1‖δ‖2 < 0,

which is a contradiction.

Remark 2.8.5 Define

F1,k = −
(
B⊺CC⊺B −B⊺CC⊺C
−C⊺CC⊺B (C⊺C)2

)
+ k



M −

m∑

j=1

(Bj)⊺MRBj (Bm)⊺MRCm

C⊺
mMRBm −C⊺

mMRCm


 ,

Fk = −
(
B⊺αα⊺B −B⊺αα⊺C
−C⊺αα⊺B (C⊺α)2

)
+ k



−

m∑

j=0

(Bj)⊺MRBj (Bm)⊺MRCm

C⊺
mMRBm −C⊺

mMRCm


 ,

F k,k1
2 = −kMR− k1M − (B⊺Q+QB),

where Cm = Bm−1C. The assumptions of Proposition 2.8.3 can be restated as:
there exist k > 0, k1 > 0 and Q such that Fk, F1,k, F

k,k1
2 are positive definite matrices.

Proposition 2.8.6 For N large enough, there exist C0 > 0 and C1 > 0 such that

C0

m∑

j=0

Ej(t) ≤ L0(t) ≤ C1

m∑

j=0

Ej(t). (2.100)

Proof. With the convention,
m∑

j=2

Ej(t) = 0 if m = 1, we have

L0(t)−N2
m∑

j=2

Ej(t) = N2

∫

Ω
(|∇y|2 + |yt|2 + |∇yt|2 + |ytt|2)dx+N2

∫

Γ0

(‖δ‖2 + ‖δt‖2)ds

+N
1
2

∫

Γ0

(δ⊺Qδ + α⊺δy)ds+

∫

Ω
(ytq.∇y +

d− 1

2
yyt)dx.

Hence, by Cauchy-Schwarz’s and Poincaré’s inequalities and a trace theorem, we get

L0(t)−N2
m∑

j=2

Ej(t) ≤ N2

(∫

Ω
(|∇y|2 + |yt|2)dx+

∫

Γ0

‖δ‖2ds+
∫

Ω
(|∇yt|2 + |ytt|2)dx+

∫

Γ0

‖δt‖2ds
)

+N
1
2K3

∫

Γ0

n max
1≤i,j≤n

|qi,j |‖δ‖2ds+N
1
2

∫

Γ0

(
K3|α|2‖δ‖2 + |y|2

2

)
ds

+
d− 1

2

∫

Ω

( |yt|2 + |y|2
2

)
dx+

∫

Ω

(
|yt|2 +R2

0|∇y|2
)
dx.
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L0(t)−N2
m∑

j=2

Ej(t) ≥ N2

(∫

Ω
(|∇y|2 + |yt|2)dx+

∫

Γ0

‖δ‖2ds+
∫

Ω
(|∇yt|2 + |ytt|2)dx+

∫

Γ0

‖δt‖2ds
)

−N 1
2

∫

Γ0

nK3 max
1≤i,j≤n

|qi,j |‖δ‖2ds−N
1
2K3

|α|2
2

∫

Γ0

‖δ‖2 ds−N
1
2
Cγ

2

∫

Ω
|∇y|2 dx

−d− 1

2

∫

Ω

( |yt|2 + Cγ |∇y|2
2

)
dx−

∫

Ω

(
|yt|2 +R2

0|∇y|2
)
dx,

where K3 is a positive constant independent of N . For N chosen large enough, this right-hand
side dominates E0(t) + E1(t), and the conclusion follows.

Theorem 2.8.7 Let U0 ∈ D(Am). Under the assumptions of Proposition 2.8.3, we get

E0(t) .
1

t

m∑

j=0

Ej(0). (2.101)

Proof. Let U0 ∈ D(Am+1). Integrating the inequality (2.90) between 0 and t > 0, we get
∫ t

0
E0(τ)dτ ≤ −

∫ t

0
C−1 d

dτ
L0(τ)dτ = C−1(L0(0)− L0(t))

≤ C−1C1

m∑

j=0

Ej(0),

this last estimate following from (2.100). But d
dt(tE0(t)) = E0(t)+t

d
dtE0(t) ≤ E0(t) and therefore

tE0(t) =

∫ t

0

d(τE0(τ))

dτ
dτ ≤

∫ t

0
E0(τ)dτ ≤ C−1C1

m∑

j=0

Ej(0),

as required.
By a density argument we deduce that (2.101) holds for all U0 ∈ D(Am).

Corollary 2.8.8 Let U0 ∈ D(A). Under the assumptions of Proposition 2.8.3, we have

‖eAtU0‖2H .
1

t
1
m

‖U0‖2D(A). (2.102)

Proof. Due to Theorem 2.8.7 we have E(t) ≤ C
t

m∑

j=0

Ej(0). By Remark 2.2.2 and Remark 2.8.4,

A has a bounded inverse, thus applying Proposition 2.8.1 the result follows.

Proposition 2.8.9 Consider the system (2.2) satisfying the assumptions of Proposition 2.8.3.
For all U0 ∈ H, the energy of the solution of the system (2.2) decays asymptotically to zero, i.e.,

E(t) → 0, as t→ ∞.

Proof. Let ε > 0 be given. Due to the density of D(A) in H, there exists U ε
0 ∈ D(A) such that

‖U ε
0 − U0‖ < ε

2 . But (eAt)t>0 is a contraction semigroup on H, so ‖eAt(U ε
0 − U0)‖ < ε

2 . Since
Corollary 2.8.8 yields that eAtU ε

0 converges to zero as t tends to infinity, there exists Tε > 0 such
that for all t > Tε, we have ‖eAtU ε

0‖H < ε
2 and hence ‖eAtU0‖H < ε

2 + ‖eAtU ε
0‖H < ε, for all

t > Tε.
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Remark 2.8.10 If we suppose that B ∈ C0,1(Γ0,Mn(R)) and C ∈ C0,1(Γ0,R
n) with the as-

sumptions of Proposition 2.8.3 assumed to be valid for all x ∈ Γ0 (with constants k > 0, k1 > 0
independent of x) with Q ∈ C0,1(Γ0,Mn(R)), then the results of Propositions 2.8.3, 2.8.7, and
2.8.9 are still valid (proved with the same arguments).

2.9 Examples

In this section, we illustrate our general framework by checking the assumptions of the fre-
quency domain approach and that of the multiplier method for some particular examples.

2.9.1 Example 1: Acoustic boundary conditions

Let Ω be a domain of R3 with a boundary Γ divided as in the introduction. The system
considered by Beale [16] (with Γ1 = ∅) and Rivera-Qin in [38] with c = 1 is the following one:





ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
y(x, t) = 0 , x ∈ Γ1, t > 0,
∂y
∂ν (x, t) = ηt(x, t) , x ∈ Γ0, t > 0,
mηtt(x, t) + dηt(x, t) + kη(x, t) + ρyt(x, t) = 0, , x ∈ Γ0, t > 0,

where ρ is a positive constant and m, d, k are positive and sufficiently smooth functions on Γ0.
Let us set m0 = min

x∈Γ0

m(x),m1 = max
x∈Γ0

m(x), d0 = min
x∈Γ0

d(x) and d1 = max
x∈Γ0

d(x).

We readily check that this system can be rewritten in the form of system (2.2) with δ = (η, ηt)
⊤

and

B(x) =

(
0 1

− k
m − d

m

)
,M(x) =

(
k
ρ 0

0 m
ρ

)
, R(x) =

(
0 0

0 − d
m

)
, C(x) =

(
0
ρ
m

)
, x ∈ Γ0.

For all x ∈ Γ0, the matrix B(x) is Hurwitz and thus Σ ∩ iR = ∅. Hence, the assumptions
(A2), (A3) and (A4) of Proposition 2.4.2 hold. Moreover, we can easily check (A1) and we then
deduce by the proof of Proposition 2.4.3 that σ(A)∩ iR = ∅ if Γ1 is non empty. In addition, the
inequality (2.57) of Proposition 2.6.2 is satisfied for p = 1. Therefore, if Γ1 is non empty and if
eAt is exponentially stable (see Remark 2.6.5), we deduce by Proposition 2.6.2 that

E(t) .
1

t2/3
‖U0‖2D(A), ∀t > 0.

A similar result holds if eAt is only polynomially stable, in particular in the setting of Remark
2.6.6, we will get

E(t) .
1

t
2
5

‖U0‖2D(A) ∀t > 0.

On the other hand if Γ1 is empty, since B is invertible and (B−1C,C) = 0, we are then in the
second case of section 2.7 (subsection 2.7.2) as we easily check that the assumptions (2.79) and
(2.80) are satisfied. Therefore, if eAt is exponentially stable (see Remark 2.6.5), we deduce by
Proposition 2.7.15 that

‖(y, yt, η, ηt)⊤ − α(1, 0, 0, 0)⊤ − β(t, 1,−ρ
k
, 0)⊤‖H̃ .

1

t2/3
‖U0‖2D(A), ∀t > 0,
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where α and β are two constants depending on U0.

If we want to apply the multiplier method of section 2.8, we set

Q =

(
d
2

m
2

m
2 0

)
, α =

(
ρ
0

)
,

and directly obtain that

B⊺Q+QB =

(
−k 0
0 m

)
, Bδ − Cv =

(
δ2

− k
mδ1 − d

mδ2 −
ρ
mv

)
,

for δ = (δ1, δ2)
⊺ ∈ R2 and v ∈ R. It is easy to see that

(C⊺(Bδ − Cv))2 =
ρ2

m2

(
− k

m
δ1 −

d

m
δ2 −

ρ

m
v

)2

≤ ρ2

m2
0

m1

d0

d0
m1

(
− k

m
δ1 −

d

m
δ2 −

ρ

m
v

)2

.
d

m

(
− k

m
δ1 −

d

m
δ2 −

ρ

m
v

)2

= − (R(Bδ − Cv), (Bδ − Cv)) ,

(α⊺(Bδ − Cv))2 = ρ2δ22 ≤ ρ2
m1

d0
(−Rδ, δ),

that are satisfied for all x ∈ Γ0. Hence, the assumptions of Proposition 2.8.3 holds with m = 1
independently of x ∈ Γ0, thus according to Remark 2.8.10 the energy of the system decays
polynomially for initial datum U0 ∈ D(A) and we thus get the decay rate (2.101) with m = 1 as
in [38].

2.9.2 Example 2

Consider the following system





ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
y(x, t) = 0 , x ∈ Γ1, t > 0,
∂y
∂ν (x, t) = b1δ(t) + δt(t)− κ(t) , x ∈ Γ0, t > 0,
δtt(x, t) + b1δt(x, t) + b0δ(x, t) + b0yt(x, t) = 0 , x ∈ Γ0, t > 0,
κt(t) + b2κ(t)− yt(x, t) = 0 , x ∈ Γ0, t > 0,

(2.103)

with b0, b1, b2 positive constants. Choosing

δ1 =
δt + b1δ

b0
, δ2 = −δ, δ3 = −κ,

we get a system of the form (2.2) with

M =



b0 0 0
0 1 0
0 0 1


 , B =




0 1 0
−b0 −b1 0
0 0 −b2


 , R =



0 0 0
0 −b1 0
0 0 −b2


 , C =



1
0
1


 .
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As in the preceding example, if Γ1 is non empty, it is easy to check that σ(A) ∩ iR = ∅ ((A1)
holds and Σ∩ iR = ∅) as well as (2.57) with p = 1 (by Proposition 2.6.4 as P (C) 6= 0). Hence if
Γ1 is non empty and if eAt is exponentially stable, the energy of the solution of (2.103) satisfies

E(t) .
1

t2/3
‖U0‖2D(A), ∀U0 ∈ D(A), ∀t > 0.

For this example, if Γ1 is empty, B is also invertible but (B−1C,C) 6= 0. Therefore, we are in
the first case of section 2.7 (subsection 2.7.1). Hence, if eAt is exponentially stable (see Remark
2.6.5), we deduce by Proposition 2.7.15 that

‖(y − α, yt, δ1, δ2, δ3)
⊤‖H .

1

t2/3
‖U0‖2D(A), ∀t > 0,

with α a constant depending on U0.

Let us now check the assumptions of Proposition 2.8.3 with m = 1 and the choice

Q =




b1
2

1
2 0

1
2 0 0
0 0 0


 .

For any δ = (δ1, δ2, δ3)
⊺ ∈ R3 and v ∈ R, simple calculations yield

B⊺Q+QB =



−b0 0 0
0 1 0
0 0 0


 , Bδ − Cv =




δ2 − v
−b0δ1 − b1δ2
−b2δ3 − v


 , α =



b1
1
0




and
− (R(Bδ − Cv), (Bδ − Cv)) = b1(b0δ1 + b1δ2)

2 + b2(b2δ3 + v)2.

Moreover, for any δ = (δ1, δ2, δ3)
⊺ ∈ R3 and v ∈ R, we directly check that

(C⊺(Bδ − Cv))2 = (δ2 − 2(b2δ3 + v) + b2δ3)
2

. δ22 + δ23 + (b2δ3 + v)2,

and

(α⊺(Bδ − Cv))2 = (b1δ2 − b1(v + b2δ3) + b1b2δ3 − b0δ1 − b1δ2)
2

. b21δ
2
2 + (b2b1)

2δ23 + b21(v + b2δ3)
2 + (b0δ1 + b1δ2)

2.

Thus, we have

(α⊺(Bδ − Cv))2 + (C⊺(Bδ − Cv))2 . (−Rδ, δ)− (R(Bδ − Cv), (Bδ − Cv)) .

This implies that (2.87) and (2.89) hold. Finally, due to the definition of R and the form of
B⊺Q + QB, (2.88) is valid with k1 = b0 and k large enough. Hence, the polynomial stability
follows from Theorem 2.8.7 and the energy of the system (2.103) defined on a domain whose
boundary is divided as in section 2.8 satisfies (2.101) with m = 1 .
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2.9.3 Example 3

Consider the following system




ytt(x, t)−∆y(x, t) = 0 , x ∈ Ω, t > 0,
y(x, t) = 0 , x ∈ Γ1, t > 0,
∂y
∂ν (x, t)− b1κ(x, t)− κt(x, t) = 0 , x ∈ Γ0, t > 0,
κtt(t) + b1κt(t) + b0κ(t) + b0yt(x, t) = 0 , x ∈ Γ0, t > 0,

(2.104)

Set δ = ( b1κ+κt
b0

,−κ)⊺ = (δ1, δ2)
⊺, then our system is nothing but (2.2) with

M =

(
b0 0
0 1

)
, B =

(
0 1

−b0 −b1

)
, R =

(
0 0
0 −b1

)
, C =

(
1
0

)
.

In this example, if Γ1 is non empty, we have σ(A) ∩ iR = ∅ and (2.57) holds for p = 2
(P (B0C) 6= 0, see Proposition 2.6.4). Hence, if Γ1 is non empty and if eAt is exponentially
stable, then by Proposition 2.6.2 we obtain

E(t) .
1

t2/5
‖U0‖2D(A), ∀t > 0.

If Γ1 is empty, then we are in the first case of section 2.7 (subsection 2.7.1) as B is invertible
and (B−1C,C) 6= 0. Therefore, if eAt is exponentially stable, then we deduce by Proposition
2.7.15 that

‖(y − α, yt, δ1, δ2, δ3)
⊤‖H .

1

t2/5
‖U0‖2D(A), ∀t > 0,

with α a constant depending on U0.

In the setting of section 2.8, we first note that (2.89) is not valid with m = 1 and thus the
assumptions of Proposition 2.8.3 are not satisfied for m = 1. Let us nevertheless check the
assumptions of Proposition 2.8.3 for m = 2. Indeed, choosing

Q =

(
b1
2

1
2

1
2 0

)
,

we get

B⊺Q+QB =

(
−b0 0
0 1

)
, α = 2QC =

(
b1
1

)
, Bδ − Cv =

(
δ2 − v

−b0δ1 − b1δ2

)
.

Since RC = 0, we have

− (R(Bδ − Cv), (Bδ − Cv)) = − (RBδ,Bδ) = b1(b0δ1 + b1δ2)
2,

and
− (RB(Bδ − Cv), B(Bδ − Cv)) = b1 (b0(δ2 − v)− b1(b0δ1 + b1δ2))

2 .

Indeed,

(C⊺(Bδ − Cv))2 =
(b0(δ2 − v))2

b20
=

1

b20
(b0(δ2 − v)− b1(b0δ1 + b1δ2) + b1(b0δ1 + b1δ2))

2

≤ − 2

b1b20
(RB(Bδ − Cv), B(Bδ − Cv))− 2b1

b20
(RBδ,Bδ) ,
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and

(α⊺(Bδ − Cv))2 = (b1(δ2 − v)− b0δ1 − b1δ2)
2 ≤ 2(b21(δ2 − v)2 + (b0δ1 + b1δ2)

2)

≤ −4b1
b20

(RB(Bδ − Cv), B(Bδ − Cv))− (
4b31
b20

+
2

b1
) (RBδ,Bδ) .

Hence, the assumptions of Proposition 2.8.3 holds with m = 2. According to Corollary 2.8.8,
the energy of system (2.104) therefore satisfies the following polynomial estimate

E(t) .
1

t
1
2

‖U0‖2D(A).

75





3 Stabilization of second order evolution

equations by unbounded dynamic

feedbacks and applications

3.1 Introduction

Let X be a complex Hilbert space with norm and inner product denoted respectively by
‖ · ‖X and < ·, · >X,X . Let A be a linear unbounded positive self-adjoint operator which is the
Friedrichs extension of the triple (X,V, a), where a is a closed quadratic form with domain V
dense in X. Note that by definition D(A) (the domain of A) is dense in X and D(A) equipped
with the graph norm is a Hilbert space and the embedding D(A) ⊂ X is continuous. Further,
let U be a complex Hilbert space (which will be identified with its dual space) with norm and
inner product respectively denoted by ‖ · ‖U and < ·, · >U,U , let Ĉ be a Linear operator on U
and let B ∈ L(U, V ′), where V ′ is the dual space of V obtained by means of the inner product
in X. Denote by B∗ ∈ L(V,U) the adjoint of B. Consider the system





x′′(t) +Ax(t) +Bu(t) = 0, t ∈ [0,+∞)

ρu′(t)− Ĉu(t)−B∗x′(t) = 0, t ∈ [0,+∞)
x(0) = x0, x

′(0) = y0, u(0) = u0,

(3.1)

with ρ a scalar parameter. By replacing ρ by 0 and −Ĉ by the identity in system (3.1) we
obtain the system whose stability was studied in [9].

In this chapter we are interested in studying the stability of linear control problems coming
from elasticity which can be written as





x′′(t) +Ax(t) +Bu(t) = 0, t ∈ [0,+∞)

u′(t)− Ĉu(t)−B∗x′(t) = 0, t ∈ [0,+∞)
x(0) = x0, x

′(0) = y0, u(0) = u0,

(3.2)

where x : [0,+∞) → X is the state of the system, u ∈ L2(0, T ;U) is the input function and Ĉ
is a m-dissipative operator on U . We denote the differentiation with respect to time by ′.

The aim of this chapter is to give sufficient conditions leading to the uniform or non uniform
stability of the solutions of the corresponding closed loop system.

The second equation of the considered system describes a dynamical control in some models.
Some systems that can be covered by the formulation (3.2) are for example the hybrid systems.

This chapter is organized as follows. In the next section we justify the well-posedness of the
problem then we write Ĉ as a sum of a skew-adjoint operator −C and a self-adjoint operator
−DD∗. The case where the operator D is bounded is studied in section 3.3. Under a regularity
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assumption we prove in section 3.4 that the observability properties of the undamped problem,
obtained by replacing Ĉ in system (3.2) by −C, imply uniform decay estimates for the damped
problem (3.2). In section 3.5 we state the results concerning the polynomial stability of the
energy. Finally, we present in section 3.6 some examples as applications of the general setting
where we obtain using a variety of methods polynomial or exponential energy decay rates.

3.2 Well-posedness results

In order to study the system (3.2) we use a reduction order argument. First, we introduce the
Hilbert space H = V ×X × U equipped with the scalar product

< z, z̃ >H,H= a(x, x̃)+ < y, ỹ >X,X + < u, ũ >U,U , ∀z, z̃ ∈ H, z = (x, y, u), z̃ = (x̃, ỹ, ũ).

Then we consider the unbounded dissipative operator, see Proposition 3.2.1 , denoted by Ad

Ad : D(Ad) −→ H
z = (x, y, u) 7−→ Adz = (y,−Ax−Bu,B∗y + Ĉu),

where
D(Ad) = {(x, y, u) ∈ V × V ×D(Ĉ), Ax+Bu ∈ X}.

So the system (3.2) is formally equivalent to

z′(t) = Adz(t), z(0) = z0, (3.3)

where z0 = (x0, y0, u0).

Proposition 3.2.1 The operator Ad is an m-dissipative operator on H and thus it generates a
C0-semigroup.

Proof.

< Adz, z >H,H = a(y, x)− < Ax+Bu, y >X,X + < B∗y + Ĉu, u >U,U

= a(y, x)− a(x, y)− < Bu, y >V ′,V + < B∗y, u >U,U + < Ĉu, u >U,U

= a(y, x)− a(x, y)+ < Ĉu, u >U,U .

Taking the real part of the above identity we get (3.5) since Ĉ is dissipative. Hence Ad is
dissipative.
We would like to show that there exists λ > 0 such that λI − Ad is surjective. Let λ > 0 be
given. Clearly, we have λ 6∈ σ(Ĉ). For (f, g, h) ∈ H, we look for (x, y, u) ∈ D(Ad) such that

(λI −Ad)



x
y
u


 =



f
g
h


 ,

i.e. we are searching for x ∈ V, y ∈ V, u ∈ D(Ĉ) satisfying

λx− y = f
λ2x+Ax+Bu = g + λf

(λI − Ĉ)u−B∗y = h.
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By Lax-Milgram lemma there exists a unique x ∈ V such that
(
λ2 +A+ λB(λI − Ĉ)−1B∗

)
x = g + λf +B(λI − Ĉ)−1 (B∗f − h) .

In fact, we have λ2 + A + λB(λI − Ĉ)−1B∗ ∈ L(V, V ′), g + λf + B(λI − Ĉ)−1 (B∗f − h) ∈ V ′

and
ℜ
〈(
λ2 +A+ λB(λI − Ĉ)−1B∗

)
x, x

〉
V ′,V

≥ 〈Ax, x〉V ′,V ,

since

ℜ
〈
B(λI − Ĉ)−1B∗x, x

〉
V ′,V

= ℜ
〈
u, (λI − Ĉ)u

〉
U,U

= λ‖u‖2 −ℜ
〈
u, Ĉu

〉
U,U

≥ 0,

with u = (λI − Ĉ)−1B∗x, i.e. the coercivity property is satisfied.

Define
u = (λI − Ĉ)−1 (h+B∗ (λx− f)) ,

by choosing y = λx− f we deduce the surjectivity of λI −A. Finally, we conclude that λI −A
is bijective, for all λ > 0.

Now, we are able to state the following existence result of problem (3.3).

Proposition 3.2.2 (i) For an initial datum z0 ∈ H, there exists a unique solution
z ∈ C([0, +∞), H) to system (3.3). Moreover, if z0 ∈ D(Ad), then

z ∈ C([0, +∞), D(Ad)) ∩ C1([0, +∞), H). (3.4)

(ii) For each z0 ∈ D(Ad), the energy E(t) of the solution z of (3.3), defined by

E(t) =
1

2
‖z(t)‖2H,

satisfies
E′(t) = ℜ < Ĉu(t), u(t) >≤ 0, (3.5)

therefore the energy is non-increasing.
Moreover, we have the following estimate

−
∫ t

0
ℜ < Ĉu(s), u(s) > ds = E(0)− E(t) ≤ 1

2
‖z0‖2H, ∀t ∈ [0,+∞), ∀z0 ∈ H. (3.6)

Proof. (i) is a direct consequence of Lumer-Phillips theorem (see [42]).
(ii) For an initial datum in D(Ad) from (3.4), we know that u is of class C1 in time, thus we

can derive the energy E(t), and using Propostion 3.2.1 we obtain:

E′(t) = ℜ < z′, z >H,H= ℜ < Adz, z >H,H= ℜ < Ĉu, u > .

Hence the energy is non-increasing. Finally (3.6) is a direct consequence of (3.5).
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Assume that Ĉ can be written as Ĉ = −C −DD∗ where C is a skew-adjoint operator on U ,
D ∈ L(W, (D(C))′), and W is supposed to be a Hilbert subspace of U identified with its dual,
thus D∗ ∈ L(D(C),W ).

We first introduce the conservative system associated with the initial problem (3.2) as




x′′1(t) +Ax1(t) +Bu1(t) = 0, t ∈ (0,+∞)
u′1(t) + Cu1(t)−B∗x′1(t) = 0, t ∈ (0,+∞)
x1(0) = x0, x

′
1(0) = y0, u1(0) = u0.

(3.7)

Denote by Ac the operator obtained by replacing Ĉ by −C in the expression Ad. Thus Ac is
given by

Acz1 = (y1,−Ax1 −Bu1, B
∗y1 − Cu1), ∀z1 = (x1, y1, u1) ∈ D(Ac),

with
D(Ac) = {(x1, y1, u1) ∈ V × V ×D(C), Ax1 +Bu1 ∈ X}.

The corresponding Cauchy problem can be written as

z′1(t) = Acz1(t), z1(0) = z0 ∈ D(Ac). (3.8)

We can easily check that Ac is closed anti-symmetric, maximal dissipative operator whose
opposite −Ac is also maximal dissipative, therefore Ac is skew-adjoint and generates a unitary
group.

Denote by Ar the operator

Ar : (x, y, u) ∈ H 7→ (0, 0,−DD∗u),

it is easy to see that Ar is dissipative and Ad = Ac +Ar. Note that the energy satisfies:

E′(t) = −‖D∗u(t)‖2W . (3.9)

3.3 Some regularity results

Let T > 0 be fixed and u ∈ L2(0, T ;U) be the last component of the solution z of (3.3).
Consider the evolution problem

z′2(t) = Acz2(t) +Arz(t), z2(0) = 0, t ∈ [0, T ], (3.10)

where Arz(t) = −(0, 0, DD∗u(t)).

Lemma 3.3.1 Suppose that D ∈ L(U). Then problem (3.10) admits a unique solution z2(t) =
(x2(t), y2(t), u2(t)) such that

u2 ∈ L2(0, T ;U),

satisfying the following estimate

‖D∗u2‖L2(0,T ;U) ≤ c‖D∗u‖L2(0,T ;U), (3.11)

where c is a positive constant.
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Proof. Clearly Arz(t) = −(0, 0, DD∗u(t)) ∈ C1(0, T ;H), and since Ac generates a unitary
group eAc. on H, then (3.10) admits a unique solution given by

z2(t) =

∫ t

0
eAc(t−s)Arz(s)ds =

∫ t

0
eAc(s)Arz(t− s)ds, ∀t ∈ [0, T ].

Moreover D ∈ L(U) and

‖u2‖2L2(0,T ;U) =

∫ T

0
‖u2(t)‖2Udt

≤
∫ T

0
‖z2(t)‖2Hdt

≤
∫ T

0
‖
∫ t

0
eAcs Arz(t− s)ds‖2Hdt

≤
∫ T

0

(∫ t

0
‖eAcs‖ ‖Arz(t− s)‖Hds

)2

dt,

thus

‖u2‖2L2(0,T ;U) ≤
∫ T

0
(

∫ t

0
‖Arz(s)‖Hds)2dt

≤
∫ T

0
(

∫ T

0
‖Arz(s)‖Hds)2dt

≤
∫ T

0
(

∫ T

0
‖DD∗u(s)‖Uds)2dt

≤
∫ T

0
(

∫ T

0
12ds)(

∫ T

0
‖DD∗u(s)‖2Uds)dt

≤
∫ T

0
T‖D‖2‖D∗u‖2L2(0,T ;U)dt

≤ T 2‖D‖2‖D∗u‖2L2(0,T ;U).

Consequently, as ‖D∗u2‖L2(0,T ;U) ≤ ‖D∗‖‖u2‖L2(0,T ;U), (3.11) holds with the constant
T‖D‖‖D∗‖.

3.4 Uniform stability

In this section, we give sufficient and necessary conditions which lead to uniform stability of
system (3.3).

Recall that the conservative system (3.8) is obtained by replacing Ĉ by −C in system (3.3)
and that Proposition 3.2.2 still holds. In order to get uniform stability we will need the following
assumptions:
(O) (Observability inequality) There exists a time T > 0 and a constant c(T ) > 0 (which only

depends on T ) such that, for all z0 ∈ D(Ac), the solution z1(t) = (x1(t), y1(t), u1(t)) of (3.8)
satisfies the following observability estimate:

∫ T

0
‖D∗u1(s)‖2Wds ≥ c(T )‖z0‖2H. (3.12)

(H) (Transfer function estimate) Assume that for every λ ∈ C+ = {λ ∈ C|ℜλ > 0}

C+ ∋ λ→ H(λ) = −D∗(λI + C + λB∗(λ2 +A)−1B)−1D ∈ L(W ),
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is bounded on Cβ = {λ ∈ C|ℜλ = β}, where β is a positive constant.

Theorem 3.4.1 Assume that assumption (H) is satisfied or that D ∈ L(U). Then system (3.3)
is exponentially stable, which means that the energy of the system satisfies

E(t) ≤ c e−ωtE(0), ∀t ∈ [0,+∞), (3.13)

where c and ω are two positive constants independent of the initial data z0 ∈ D(Ad) if and only
if the inequality (3.12) is satisfied.

By using [36, Theorem 5.1] and [7, Proposition 2.1] we have the following characterization of the
uniform stabily of (3.3) by a frequency criteria (Hautus test).

Corollary 3.4.2 Assume that assumption (H) is satisfied or that D ∈ L(U). Then system (3.3)
is exponentially stable in the energy space if and only if there exists a constant δ > 0 such that
for all w ∈ R, z ∈ D(Ac) we have

‖(iw −Ac)z‖2H +
∥∥( 0 0 D∗ )

z
∥∥2
U
≥ δ ‖z‖2H . (3.14)

Proof. (of Theorem 3.4.1). Let z(t) = (x(t), y(t), u(t)) be the solution of (3.3) with initial
datum z0 ∈ D(Ad). Consider z1(t) = (x1(t), y1(t), u1(t)) the solution of (3.8) with initial datum
z0 ∈ D(Ad). Let z2(t) = (x2(t), y2(t), u2(t)) be such that z2(t) = z(t)− z1(t). Then z2 is solution
of (3.10) and due to Lemma 3.3.1 its last component u2 satisfies (3.11) if D ∈ L(U). Otherwise,
(3.11) holds true due to assumption (H). Since u = u1 + u2, we get

‖z0‖2H . ‖D∗u1‖2L2(0,T ;W ) estimate (3.12)

. ‖D∗u‖2L2(0,T ;W ) + ‖D∗u2‖2L2(0,T ;W ) (triangle inequality)

. ‖D∗u‖2L2(0,T ;W ) (estimate (3.11)).

Indeed x2, u2 satisfies the system




x′′2(t) +Ax2(t) +Bu2(t) = 0, t ∈ (0,+∞)
u′2(t) + Cu2(t)−B∗x′2(t) = −DD∗u(t), t ∈ (0,+∞)
x2(0) = 0, x′2(0) = 0, u2(0) = 0.

(3.15)

Extend D∗u by zero on R \ [0, T ]. Since the system (3.15) is reversible by time we solve the
system on R. We obtain a function z ∈ C(R;V )∩C1(R;V )∩L2(R;V ) which is null for all t ≤ 0.

Let x̂2(λ) and û2(λ), where λ = γ + iη, ℜ(λ) = γ > 0 and η ∈ R, be the respective Laplace
transforms of x2 and u2 with respect to t. Then x̂2 and û2 satisfy

{
λ2x̂2(λ) +Ax̂2(λ) +Bû2(λ) = 0,
λû2(λ) + Cû2(λ)−B∗λx̂2(λ) = −DD∗û(λ).

(3.16)

Since λ2+A is invertible (Lax-Milgram lemma), we deduce from the first equation of the system
(3.16) that

x̂2 = −(λ2 +A)−1Bû2.

Substituting x̂2 in the second equation of system (3.16), we get

(λI + C + λB∗(λ2 +A)−1B)û2 = −DD∗û.
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Noting that the invertibility of λI + C + λB∗(λ2 + A)−1B follows from the invertibility of
λI −Ac we obtain

D∗û2 = −[D∗(λI + C + λB∗(λ2 +A)−1B)−1D]D∗û

and by section 3.3 or assumption (H) estimate (3.11) holds. Finally, the inequality, ‖z0‖2H .

‖D∗u‖2L2(0,T ;U), implies that there is a constant c1(T ) which depends only on T such that

E(0)− E(T ) ≥ c1(T )E(0).

But it is well known (see for instance [9]) that the previous estimate is equivalent to (3.13).

3.5 Weaker decay

In the case of non exponential decay in the energy space we give sufficient conditions for
weaker decay properties. The statement of our second result requires some notations.

Let H1,H2 be two Banach spaces such that

D(Ad) ⊂ H1 ⊂ H ⊂ H2,

where
‖.‖D(Ad) ∼ ‖.‖H1

and
[H1;H2]θ = H (3.17)

for a fixed θ ∈]0; 1[, where [:; :] denotes the interpolation space (see for instance [51]).

Let G : R+ −→ R+ be such that G is continuous, invertible, increasing on R+ and suppose

that the function x 7−→ 1

x
θ

1−θ

G(x) is increasing on (0; 1).

Theorem 3.5.1 Assume that the function G satisfies the above assumptions and that assumption
(H) is satisfied or that D ∈ L(U). Then the following assertions hold true:

1. If for all non zero z0 ∈ D(Ad), the solution z1(t) = (x1(t), y1(t), u1(t)) of (3.8) satisfies the
following observability estimate:

∫ T

0
‖D∗u1(s)‖2Uds ≥ c(T )‖z0‖2HG

(
‖z0‖2H2

‖z0‖2H

)
, (3.18)

then we have

E(t) .

[
G−1

(
1

1 + t

)] θ
1−θ

‖z0‖2D(Ad)
. (3.19)

2. If for all non zero z0 ∈ D(Ad), the solution z1(t) = (x1(t), y1(t), u1(t)) of (3.8) satisfies the
following observability estimate:

∫ T

0
‖D∗u1(s)‖2Uds ≥ c(T )‖z0‖2H2

, (3.20)
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then we have

E(t) .
1

(1 + t)
θ

1−θ

‖z0‖2D(Ad)
. (3.21)

Proof.

1. Using the same arguments as in the proof of Theroem 3.4.1 we get from (3.18)

∀z0 ∈ D(Ad),

∫ T

0
‖D∗u(s)‖2Uds ≥ c(T )‖z0‖2HG

(
‖z0‖2H2

‖z0‖2H

)
.

The sequel follows the proof of Theorem 2.4 of [9], therefore we give the outlines below.
Using (3.17) and the interpolation inequality

‖z0‖H ≤ ‖z0‖1−θ
H1

‖z0‖θH2

we easily check

‖z0‖2H2

‖z0‖2H
≥ ‖z0‖

2−2θ
θ

H

‖z0‖
2−2θ

θ
H1

, ∀z0 ∈ D(Ad).

Consequently, using (3.9) and the fact that the function t 7→ ‖z(t)‖H is nonincreasing and
G is increasing we obtain the existence of a constant K1 > 0 such that

‖z(T )‖2H ≤ ‖z(0)‖2H −K1‖z(0)‖2HG


‖z(T )‖

2−2θ
θ

H

‖z(0)‖
2−2θ

θ
H1


 .

Applying the same arguments on successive intervals [kT, (k + 1)T ], k = 1, 2, ... we obtain
the existence of a constant K2 such that

‖z((k + 1)T )‖2H ≤ ‖z(kT )‖2H −K2‖z(kT )‖2HG


‖z((k + 1)T )‖

2−2θ
θ

H

‖z(0)‖
2−2θ

θ
H1


 , ∀z0 ∈ D(Ad).

If we set Ek = G


‖z(kT )‖

2−2θ
θ

H

‖z(0)‖
2−2θ

θ
H1


 , the previous inequality, the property of G and the fact

that t 7→ ‖z(T )‖H is nonincreasing then we get

‖z((k + 1)T )‖2H
‖z(kT )‖2H

Ek
Ek+1

Ek ≤ Ek −K2E2
k+1.

Equivalently, we have

1

 ‖z(kT )‖

2−2θ
θ

H

‖z(0)‖

2−2θ
θ

H




θ
1−θ

G


‖z(kT )‖

2−2θ
θ

H

‖z(0)‖
2−2θ

θ
H1




1

 ‖z((k+1)T )‖

2−2θ
θ

H

‖z(0)‖

2−2θ
θ

H




θ
1−θ

G


‖z((k + 1)T )‖

2−2θ
θ

H

‖z(0)‖
2−2θ

θ
H1



Ek+1 ≤ Ek −K2E2

k+1. (3.22)
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Combining (3.22) and the fact that the function x 7−→ 1

x
θ

1−θ

G(x) is increasing on (0; 1),

we get
Ek+1 ≤ Ek −K2E2

k+1.

We thus deduce the existence of a constant M > 0 such that Ek ≤ M

k + 1
and we finally

get (3.19).

2. As for 1. the proof is similar to the second assertion of Theorem 2.4 of [9] which is based
on Lemma 5.2 of [8] and is left to the reader.

3.6 Examples

Beam System

We consider the following beam equation:





utt(x, t) + u(4)(x, t) = 0, 0 < x < 1, t ∈ [0,∞)
ηt(t) + βη(t)− ut(1, t) = 0, 0 < x < 1, t ∈ [0,∞)
u(0, t) = u′(0, t) = u′′(1, t) = 0, t ∈ [0,∞)
u′′′(1, t) = η(t)

(3.23)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), η(0) = η0.

In this case

X = L2(0, 1), U = C, V = {u ∈ H2(0, 1) : u(0) = u′(0) = 0},

D(A) = {u ∈ H4(0, 1) : u(0) = u′(0) = u′′(1) = 0, u(3)(1) = 0},

a(u, v) =

∫ 1

0
ū(2)v(2)dx (u, v ∈ V ), Au = u(4) (u ∈ D(A)),

B∗ = δ1, B
∗ϕ = ϕ(1) (ϕ ∈ V ).

< Bη, ϕ >V ′,V = η̄ϕ(1) (η ∈ C, ϕ ∈ V ),

and

Ĉ : C → C

η → −βη ,

where β is a postive constant.

Note that Ĉ is bounded, so we only need to find the observability inequality in order to
deduce the type of stability of the system. Since B ∈ L(U, V ′) then Bη = η · B1, and since
B1 ∈ V ′ and A ∈ L(V, V ′) then there exists a unique u0 ∈ V such that B1 = Au0. Indeed, it is
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easy to check that u0(x) = x2

2 − x3

6 . Moreover, C = 0 and D =
√
β.

Remark that in this case

D(Ac) = D(Ad) = {(u, v, η) ∈ V × V × C : Au+Bη ∈ L2(0, 1)},

and

Ac



u
v
η


 =




v
−Au−Bη

B∗v


 . (3.24)

Note that since D(Ac) is compactly injected in H, then Ac has a compact resolvent and thus
its spectrum is discrete. In addition, since Ac is a skew-adjoint real operator, then its spectrum
is constituted of pure imaginary conjugate eigenvalues. Now, let λ = iµ ∈ σ(Ac) with Uµ an
associated eigenvector then λ̄ = −iµ ∈ σ(Ac) with Ūµ an associated eigenvector. Since the
eigenvalues are conjugates , it is sufficient then to study µ ≥ 0.

Lemma 3.6.1 The eigenvalues of Ac are algebraically simple. Moreover, 0 ∈ σ(Ac) and for
every λ = iµ ∈ σ(Ac), µ > 0, µ satisfies the following characteristic equation,

f(µ) = µ
√
µ+ µ

√
µ cosh(

√
µ) cos(

√
µ) + sin(

√
µ) cosh(

√
µ)− cos(

√
µ) sinh(

√
µ) = 0. (3.25)

Proof. First it is easy to see that 0 is a simple eigenvalue of Ac and that an associated eigenvector
is U = η(−u0, 0, 1)⊤, η ∈ C.

Let λ = iµ ∈ σ(Ac), µ > 0, and let U = (u, v, η)⊤ ∈ D(Ac) be a nonzero associated eigenvector.
Then U satsifies

Ac(u, v, η)
⊤ = λ(u, v, η)⊤,

which is equivalent to 



v = λu
B∗v = λη
−Au− ηAu0 = λv = λ2u.

(3.26)

We then deduce that
A(u+ ηu0) = −λ2u,B∗u = λu(1) = η.

But as U ∈ D(Ac), then Au+ Bη = A(u+ ηu0) ∈ L2(0, 1), which implies that u+ ηu0 ∈ D(A)
and that u ∈ H4(0, 1) satisfies

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = η. (3.27)

However, A(u+ ηu0) = (u+ ηu0)
(4) = u(4), thus we need to solve

u(4) = −λ2u = µ2u, u(1) = η

with u satisfying (3.27). We deduce that u could be written as

u = c1 sin(
√
µx) + c2 sinh(

√
µx) + c3 cos(

√
µx) + c4 cosh(

√
µx),

with C = (c1, c2, c3, c4)
⊤ satisfying

M̃C = V0 (3.28)
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where

M̃ =




0 0 1 1
1 1 0 0

− sin(
√
µ) sinh(

√
µ) − cos(

√
µ) cosh(

√
µ)

− cos(
√
µ) cosh(

√
µ) sin(

√
µ) sinh(

√
µ)


 , V0 =




0
0
0
η

µ
√
µ


 .

We first remark that η 6= 0. Otherwise, since u satisfies u(4) = µ2u and the boundary conditions
u(1) = u′′(1) = u′′′(1) = 0, then there exists a constant c ∈ R such that u is given by

u(x) = c(sinh(
√
µ(1− x)) + sin(

√
µ(1− x)).

But cosh(
√
µ) + cos(

√
µ) > 0, then u′(0) = 0 implies that c = 0 and hence U = (u, λu, η)⊤ = 0

which is a contradiction.

Consequently, each eigenvalue of Ac is simple. In fact, suppose to the contrary that there exists
µ 6= 0 such that λ = iµ is not algebraically simple. Then as Ac is skew-adjoint, λ = iµ is not
geometrically simple. Thus there exists at least two independent eigenvectors Ui = (ui, vi, ηi), i =
1, 2, corresponding to λ, and hence U = η2U1−η1U2 = (u, v, η) = (u, v, 0) is an eigenvector which
is impossible.

Going back to (3.28), we get from the first three equations,

c2 = −c1, c4 = −c3, c3 = −c1
sin(

√
µ) + sinh(

√
µ)

cos(
√
µ) + cosh(

√
µ)
.

Therefore the last equation of (3.28) becomes

−2c1(1 + cos(
√
µ) cosh(

√
µ))

cos(
√
µ) + cosh(

√
µ)

=
η

µ
√
µ
.

As η 6= 0 then the determinant of M̃ which is given by det(M̃) = −2
(
1 + cos(

√
µ) cosh(

√
µ)

)

is nonzero and C is given by

C = M̃−1V0 =
η

2µ
√
µ(1 + cos(

√
µ) cosh(

√
µ))




− cos(
√
µ)− cosh(

√
µ)

cos(
√
µ) + cosh(

√
µ)

sin(
√
µ) + sinh(

√
µ)

− sin(
√
µ)− sinh(

√
µ)


 .

Substituting C in the condition u(1) = η, we finally deduce that µ satisfies the charateristic
equation (3.25).

Now, we study the asymptotic behavior of the eigenvalues of Ac.

Lemma 3.6.2 There exists k0 ∈ N large enough such that for all k ≥ k0 there exists one and
only one λk = iµk eigenvalue of Ac with

√
µk ∈ [kπ, (k + 1)π]. Moreover, as k → ∞, we have

the following
√
µk =

π

2
+ kπ +

1

k3π3
+ o

(
1

k3

)
. (3.29)

Let U1,k = (u1,k, λku1,k, η1,k) be the associated normalized eigenvector. Then,

|η1,k|2 =
4

k4
+ o

(
1

k4

)
. (3.30)
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Proof.
First step. Let z =

√
µ where iµ ∈ σ(Ac) and µ > 0. Then by (3.25), we have

f(z2) = z3 + cosh z(z3 cos z + sin z)− cos z sinh z = 0.

Replacing cosh z = ez+e−z

2 and sinh z = ez−e−z

2 in f(z2) and dividing by z3ez

2 , we deduce that z
satisfies f̃(z) = 0, where

f̃(z) = cos z +
sin z − cos z

z3
+ 2e−z + e−2z

(
cos z +

cos z

z3
+

sin z

z3

)
.

For z large enough we have
f̃(z) = cos z +O(1/z3).

It can be easily checked that for k large enough, f̃ doesn’t admit any root outside the ball
Bk = B

(
z0k,

1
k2

)
, with z0k = π

2 + kπ. Then by Rouché’s Theorem applied on Bk, we deduce that

for k large enough there exists a unique root zk of f̃ in [kπ, (k + 1)π]. Moreover, zk satisfies

zk =
π

2
+ kπ + ǫk,

with ǫk = o(1). Since zk satisifes f̃(zk) = 0, then ǫk satisfies

cos
(π
2
+ kπ + ǫk

)
+

sin
(
π
2 + kπ + ǫk

)
+ o(1)

k3π3 + o(k3)
+O(e−zk) = 0.

Hence

− sin(ǫk) +
cos(ǫk)

k3π3
+ o

(
1

k3

)
= 0,

and thus

−k3ǫk + o(k3ǫ2k) +
1

π3
+ o(k2ǫk) + o(1) = 0,

which gives

ǫk =
1

π3k3
+ o(1/k3).

Therefore, (3.29) follows for µk = z2k.

Second step. Set βk =
sin(zk) + sinh(zk)

cos(zk) + cosh(zk)
. Then

βk =
ezk + 2 sin(zk)− e−zk

ezk + 2 cos(zk) + e−zk
= 1 + o(e−zk). (3.31)

By the proof of Lemma 3.6.1, the last component η1k of U1
k is nonzero and thus

Uk = (uk, iz
2
kuk, 1) =

1

η1,k
U1,k

is an associated eigenvector to iz2k with uk having the form,

uk(x) = c1k sin(zkx) + c2k sinh(zkx) + c3k cos(zkx) + c4k cosh(zkx),
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with
c2k = −c1k, c4k = −c3k, c3k = −βkc1k.

It follows that

uk(x) = c1k [(sin(zkx)− sinh(zkx)− cos(zkx) + cosh(zkx)) + (βk − 1)(− cos(zkx) + cosh(zkx))] .
(3.32)

In order to get the behavior of ηk = 1
‖Uk‖ , it is enough to compute the integral

∫ 1
0 |uk|2dx.

Indeed, multiplying u(4)k = −λ2uk = µ2uk by ūk, integrating by parts and noting that

uk(0) = u′k(0) = 0, uk(1) = u′′′k (1) = 1,

we obtain ∫ 1

0
|u′′k|2dx = µk

2

∫ 1

0
u2kdx− 1,

and hence

‖Uk‖2 =
∫ 1

0
u2kxxdx+ µk

2

∫ 1

0
u2kdx+ 1 = 2µk

2

∫ 1

0
u2kdx.

Since

2z3kc1k =
− cos zk − ezk

2 (1 + e−2zk)

1 + ezk
2 cos zk(1 + e−2zk)

=
−1 +O(e−k)

(−1)k+1 sin ǫk +O(e−k)
,

we deduce that

c1k =
(−1)k

2
+ o(1). (3.33)

As
∫ 1

0
(sin(zx)− sinh(zx)− cos(zx) + cosh(zx))2dx =

∫ 1

0
(sin(zx)− cos(zx))2dx+ o(1) = 1 + o(1),

and ∫ 1

0
(− cos(zx) + cosh(zx))2dx =

e2z

8z
+ o(

e2z

8z
),

we consequently deduce due to (3.31), (3.32) and (3.33) that

∫ 1

0
u2k(x)dx =

1

4
+ o(1), and ‖Uk‖2 =

k4

4
+ o(k4).

Hence (3.30) holds.

Proposition 3.6.3 Let U1 = (u1, v1, η1)
T be the solution of the conservative problem (3.24)

with initial datum U0 ∈ D(Ac). Then there exists T > 0 and c > 0 depending on T such that

∫ T

0
|η1(t)|2dt ≥ c‖U0‖2D(A−1). (3.34)
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Proof. We arrange the elements of σ(Ac) in increasing order.

Let J = {iµ : |µ| < µk0}. Then σ(Ac) = J ∪ {iµk : |k| ≥ k0} and (Uµ)µ∈J ∪ (U1,k)|k|≥k0 forms
a Hilbert basis of H. We may write

U0 =
∑

µ∈J
uµ0Uµ +

∑

|k|≥k0

u
(k)
0 U1,k.

Moreover,
η1(t) =

∑

µ∈J
uµ0e

iµtηµ +
∑

|k|≥k0

u
(k)
0 eiµktη1,k.

Note that µk+1 − µk ≥ π
2 for |k| ≥ k0. Set γ0 = min

{
π
2 ,min{|µ− µ′| : µ ∈ J, µ′ ∈ J}

}
. As

|µ − µ′| ≥ γ0 > 0 for all consecutive µ ∈ σ(Ac), µ
′ ∈ σ(Ac). Then using Ingham’s inequality

there exists T > 2πγ0 > 0 and a constant c > 0 depending on T such that

∫ T

0
|η1(t)|2dt ≥ c


∑

µ∈J
|uµ0ηµ|2 +

∑

|k|≥k0

|u(k)0 η1,k|2

 .

Due to Lemma 3.6.2, we have that |η1,k|2 ∼ 1

k4
. we deduce using Ingham’s inequality the

existence of T > 0 such that

∫ T

0
|η1|2dt &

∑

µ∈J
|uµ0 |2|µ|−2 +

∑

|k|≥k0

|u(k)0 |2
k4

. (3.35)

Therefore, we obtain (3.34) as required.

Theorem 3.6.4 Let U0 ∈ D(Ad) and let U be the solution of the corresponding dissipative
problem

Ut = AdU, U(0) = U0 ∈ D(Ad).

Then U satisfies,

‖U(t)‖2 . 1

1 + t
‖U0‖2D(Ad)

. (3.36)

Proof. Since the operator D ∈ L(U), then Lemma 3.3.1 holds true.

Set H1 = D(Ac) and H2 = D(A−1
c ), the dual of D(Ac) obtained by means of the inner product

in X. Then H = [H1;H2]1/2. By Proposition 3.6.3, we have

∫ T

0
‖D∗u1(s)‖2Uds ≥ cT ‖u0‖2H2

.

By Theorem 3.5.1 applied for θ = 1/2, we therefore obtain (3.36).
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Example on uniform stability

Consider the following system,





utt(x, t) + u(4)(x, t) + αθxx(x, t) = 0, t ∈ [0,∞), 0 < x < 1
θt(x, t) + βθ(x, t)− αutxx(x, t) = 0, t ∈ [0,∞), 0 < x < 1
u(0, t) = u(1, t) = u′′(0, t) = u′′(1, t) = 0 t ∈ [0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), 0 < x < 1

(3.37)

with α > 0, β > 0. Define the following spaces,

V = H2(0, 1) ∩H1
0 (0, 1), X = U = L2(0, 1),

and the following operators,

D(A) = {u ∈ H4(0, 1) ∩H1
0 (0, 1) : uxx(0) = uxx(1) = 0}, Au = uxxxx ∈ L2(0, 1),

Ĉ : L2(0, 1) → L2(0, 1)

θ → −βθ.

Remark that Ĉ is a bounded operator on L2(0, 1). Moreover, B and B∗ are given by

B : U → V ′ , B∗ : V → U

θ → αθxx u→ αuxx,

andD,D∗ ∈ L(U) withDθ = D∗θ =
√
βθ. The norm defined on the energy space H = V ×X×U

is given by

‖(u, v, θ)⊤‖2H =

∫ 1

0
|uxx|2dx+

∫ 1

0
|v|2dx+

∫ 1

0
|θ|2dx

We moreover have

D(Ad) = D(Ac) = {(u, v, θ)⊤ ∈ V × V × U : u(4) + θxx ∈ L2(Ω)}.

The associated conservative system is given by





utt(x, t) + u(4)(x, t) + αθxx(x, t) = 0, t ∈ [0,∞), 0 < x < 1
θt(x, t)− αutxx(x, t) = 0, t ∈ [0,∞), 0 < x < 1
u(0, t) = u(1, t) = u′′(0, t) = u′′(1, t) = 0 t ∈ [0,∞)
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), 0 < x < 1.

(3.38)

In the following proposition we prove that the solution u, θ of (3.38) satisfies the required ob-
servability inequality (assumption (O)), which is enough to deduce the exponential stability of
(3.37) as D ∈ L(U).

Proposition 3.6.5 Let U0 = (u0, u1, θ0)
⊤ ∈ H. Then the solution (u, θ) of (3.38) satisfies

∫ T

0
|θ(t)|2dt & ‖U0‖2H. (3.39)
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Proof. Writing (u0, u1, θ0)
⊤ ∈ D(Ac) with respect to the basis (sin(kπx))k∈N∗ of L2(0, 1), we

have
u0 =

∑

k∈N∗

u0k sin(kπx), u1 =
∑

k∈N∗

u1k sin(kπx), θ0 =
∑

k∈N∗

θ0k sin(kπx).

The solution (u, θ) of (3.38) is thus given by

u(t) =
∑

k∈N∗

uk(t) sin(kπx) and θ(t) =
∑

k∈N∗

θk(t) sin(kπx).

By the second equation of (3.38),

θ′k(t) + αk2π2u′k(t) = 0, ∀k ∈ N∗.

Due to the initial conditions we deduce that

θk(t) = −αk2π2uk(t) + θ0k + αk2π2u0k.

Replacing u and θ in the first equation of (3.38), we deduce that

u′′k(t) + k4π4(1 + α2)uk(t) = αk2π2(θ0k + αk2π2u0k), ∀k ∈ N∗,

hence

uk(t) =
α(θ0k + αk2π2u0k)

k2π2(1 + α2)
+ c1 cos(k

2π2
√
1 + α2t) + c2 sin(k

2π2
√

1 + α2t),

where

c1 =
−αθ0k + k2π2u0k
k2π2(1 + α2)

, c2 =
u1k

k2π2
√
1 + α2

,

obtained by the initial conditions uk(0) = u0k, u
′
k(0) = u1k and θk(0) = θ0k.

Finally,

θk(t) =
1

(1 + α2)
3
2

[
√

1 + α2(θ0k + αk2π2u0k) + α
√

1 + α2(αθ0k − k2π2u0k) cos(
√

1 + α2k2π2t)

−α(1 + α2)u1k sin(
√

1 + α2k2π2t)].

Set T =
2√

1 + α2π
. Then,

|θk(t)|2 =
1

(1 + α2)
5
2π

[
(2 + α4)(θ0k)

2 − 2α(−2 + α2)k2π2θ0ku
0
k + α2(3k4π4(u0k)

2 + (1 + α2)(u1k)
2)
]

=
α2(1 + α2)(u1k)

2

(1 + α2)
5
2π

+
(
k2u0k θ0k

)
M

(
k2u0k
θ0k

)
,

where M is a square matrix given by



3α2π3

(1+α2)
5
2

−α(−2+α2)π

(1+α2)
5
2

−α(−2+α2)π

(1+α2)
5
2

2+α4

π(1+α2)
5
2


 .
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But as

detM =
2α2π2

(1 + α2)3
> 0, traceM =

2 + α4 + 3α2π4

π(1 + α2)
5
2

> 0,

we deduce that λmin ≥ c > 0 (where λmin is the smallest eigenvalue of M) for some constant c
independent of k and hence

∫ T

0
|θk(t)|2dt ≥ T

(
α2(1 + α2)(u1k)

2

(1 + α2)
5
2π

+ λmin(M)(k4(u0k)
2 + (θ0k)

2)

)

we get ∫ T

0
|θ(t)|2dt &

∑

k∈N∗

(k4(u0k)
2 + (θ0k)

2 + (u1k)
2) & ‖U0‖2H.

We hence conclude (3.39) by denseness of D(Ac) in H.

Recall that the energy of a solution (u, θ) of (3.38) is defined by

E(t) =
1

2

(∫ 1

0
|uxx|2dx+

∫ 1

0
|ut|2dx+

∫ 1

0
|θ|2dx

)
.

Theorem 3.6.6 Let U0 ∈ H. Then there exists ω > 0 such that the energy of the solution (u, θ)
of (3.37) satisfies

E(t) . e−ωtE(0), ∀t ∈ [0,+∞). (3.40)

Proof. By Proposition 3.6.5, assumption (O) holds true. Then (3.40) follows by applying
Theorem 3.4.1.

Hybrid example-2D problem

Let Ω be a bounded domain of R2 whose boundary Γ satisfies

Γ = Γ0 ∪ Γ1, Γ̄0 ∩ Γ̄1 = φ, and meas Γ0 6= 0.

We assume moreover that there exists a point x0 ∈ R2 such that

Γ0 = {x ∈ Γ : m(x).ν ≤ 0}, Γ1 = {x ∈ Γ : m(x).ν ≥ ω > 0},

for some constant ω > 0, where m(x) = x − x0 and ν = ν(x) denotes the unit outward normal
vector at x ∈ Γ. Denote by R = ‖m‖∞ = sup

x∈Ω
‖m(x)‖.

Consider the following system,

(Pb)





ytt(x, t)−∆y(x, t) = 0, x ∈ Ω, t > 0,
y(x, t) = 0, x ∈ Γ0, t > 0,
aytt(x, t) + ∂νy(x, t) + η(x, t) = 0, x ∈ Γ1, t > 0,
ηt(x, t)− yt(x, t) + bη(x, t) = 0, x ∈ Γ1, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,
η(x, 0) = η0(x) x ∈ Γ1,
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where a and b are two positive constants. In order to justify that the system could be written in
the proposed general form, we introduce a proper functional setting. Let

X = L2(Ω)× L2(Γ1)

endowed with the inner product,

〈
(y, ξ)⊤, (ỹ, ξ̃)⊤

〉
X

=

∫

Ω
< y, ỹ > dx+

1

a

∫

Γ1

< ξ, ξ̃ > ds

and
W = {y ∈ H1(Ω) : y = 0 on Γ0} = H1

Γ0
(Ω), U = L2(Γ1).

Define also V by
V = {(y, ξ) ∈W × L2(Γ1) : ay = ξ on Γ1},

and the operator (A,D(A)) by

A(y, ξ)⊤ = (−∆y, ∂νy|Γ1)
⊤

with
D(A) = {x = (y, ξ)⊤ ∈ V : y ∈ H2(Ω)}.

We can easily check using Lax-Milgram lemma that (A± iI) are surjective. In addition, since A
is symmetric we deduce that A is self-adjoint. The corresponding form ã is given by

ã(u, ũ) =

∫

Ω
< yx, ỹx > dx, u = (y, ξ)⊤ ∈ V, ũ = (ỹ, ξ̃)⊤ ∈ V.

In addition, we define for every η ∈ U and (y, ξ)⊤ ∈ V the operators B and B∗ by

Bη = (0, η)⊤, B∗(y, ξ)⊤ = y|Γ1 .

The operator C = 0 and the operator Ĉ is given by

Ĉη = −bη, η ∈ L2(Γ1).

Hence the system (Pb) can be written in the form of system (3.2).
Accordingly, we define the energy space

H = V × L2(Ω)× L2(Γ1)
2,

endowed with the inner product

(u, ũ)H =

∫

Ω
< yx, ỹx > dx+

∫

Ω
< z, z̃ > dx+

1

a

∫

Γ1

< ξ, ξ̃ > ds+

∫

Γ1

< η, η̃ > ds,

where u = (y, ζ, z, ξ, η), ũ = (ỹ, ζ̃, z̃, ξ̃, η̃) ∈ H, and < ., . > represents the Hermitian product in
C. The associated norm will be denoted by ‖ · ‖H. Moreover, (Ad,D(Ad)) is then given by

Adu = (z, ξ,∆y,−∂νy − η, z|Γ1 − bη), ∀u = (y, ζ, z, ξ, η) ∈ D(Ad),
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with
D(Ad) = {u = (y, ζ, z, ξ, η) ∈ H : y ∈ H2(0, 1), z ∈W, ζ = ay|Γ1ξ = az|Γ1}.

Hence, the previous problem (Pb) is formally equivalent to

ut = Adu, u(0) = u0, (3.41)

where u0 = (y0, ay0|Γ1 , y1, ay1|Γ1 , η0). The energy of the system (Pb) is given by

E(t) =
1

2

(∫

Ω
|yt|2dx+

∫

Ω
|∇y|2dx+

1

a

∫

Γ1

|yt|2ds+
∫

Γ1

|η2|ds
)
,

and its derivative
d

dt
E(t) = −b

∫

Γ1

|η2|ds.

The corresponding conservative system is defined by

(P0)





ytt(x, t)−∆y(x, t) = 0, x ∈ Ω, t > 0,
y(x, t) = 0, x ∈ Γ0, t > 0,
aytt(x, t) + ∂νy(x, t) + η(x, t) = 0, x ∈ Γ1, t > 0,
ηt(x, t)− yt(x, t) = 0, x ∈ Γ1, t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,
η(x, 0) = η0(x) x ∈ Γ1.

The initial value problem associated to the conservative system (P0) is given by

ut = Acu, u(0) = u0, (3.42)

where

Acu = (z, ξ,∆y,−∂νy − η, z|Γ1), ∀u = (y, ζ, z, ξ, η) ∈ D(Ac), D(Ac) = D(Ad).

As the operators D and D∗ given by,

Dη = D∗η =
√
bη, η ∈ L2(Γ1),

are bounded, Lemma 3.3.1 holds true. Thus in order to deduce the polynomial stability of the
solution of (3.41), it is sufficient to check that the solution u1 of (3.42) satisfies the observability
inequality (O),

b

∫ T

0

∫

Γ1

|η21| & ‖u0‖2D(A−2
c )
,

where D(A−2
c ) denotes throughout the example the space (D(A2

c))
′.

We first state the following proposition.

Lemma 3.6.7 Let u0 = (y0, ζ0, z0, ξ0, η0)
⊤ ∈ H and let u1 = (y1, ζ1, z1, ξ1, η1)

⊤ be the corre-
sponding solution of the problem (3.42). Then there exists cT > 0 such that

∫ T

0

∫

Γ1

|η21| ≥ cT ‖u0‖2D(A−2
c )
. (3.43)
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Proof. First step. Let v0 ∈ D(Ac) and v = (y, ζ, z, ξ, η)⊤ be a solution of

vt = Acv, v(0) = v0. (3.44)

Then there exist two positive constants Ci > 0, i = 1, 2 such that

(T − C1)‖v0‖2H ≤ C2

(∫ T

0

∫

Γ1

|yt|2 +
∫ T

0

∫

Γ1

|∂νy|2 +
∫ T

0

∫

Γ1

|η|2
)
, (3.45)

for all T > 0.

Indeed, for v0 ∈ D(Ac), we have

∫ T

0

∫

Ω
ytt(2m · ∇y) = −

∫ T

0

∫

Ω
yt(2m · ∇yt) +

[∫

Ω
yt2m · ∇y

]T

0

(3.46)

= 2

∫ T

0

∫

Ω
|yt|2 −

∫ T

0

∫

Γ
(m · ν)|yt|2 +

[∫

Ω
yt2m · ∇y

]T

0

,

and
∫ T

0

∫

Ω
∆y(2m · ∇y) = −

∫ T

0

∫

Ω
∇y · ∇(2m · ∇y) +

∫ T

0

∫

Γ
∂νy(2m · ∇y) (3.47)

= −
∫ T

0

∫

Γ
(m · ν)|∇y|2 +

∫ T

0

∫

Γ
∂νy(2m · ∇y).

Finally, multiplying the wave equation by 2m · ∇y and substracting (3.47) from (3.46) leads
to,

2

∫ T

0

∫

Ω
|yt|2 −

∫ T

0

∫

Γ1

(m · ν)|yt|2 +
∫ T

0

∫

Γ
(m · ν)|∇y|2 (3.48)

+

[∫

Ω
yt2m · ∇y

]T

0

−
∫ T

0

∫

Γ
∂νy(2m · ∇y) = 0.

Multiplying the wave equation equation by y we obtain

−
∫ T

0

∫

Ω
|yt|2 +

∫ T

0

∫

Ω
|∇y|2 +

[∫

Ω
yty

]T

0

−
∫ T

0

∫

Γ
(ν · ∇y)y = 0. (3.49)

As ∫ T

0

∫

Γ
∂νy(2m · ∇y) = 2

∫ T

0

∫

Γ
(m.ν)(∂νy)

2 + 2

∫ T

0

∫

Γ
(m.τ)(∂νy∂τy),

then taking into consideration the Dirichlet condition on Γ0, we get

∫ T

0

∫

Γ
∂νy(2m · ∇y)−

∫ T

0

∫

Γ
(m · ν)|∇y|2 =

∫ T

0

∫

Γ
(m.ν)(∂νy)

2 −
∫ T

0

∫

Γ1

(m.ν)(∂τy)
2

+2

∫ T

0

∫

Γ1

(m.τ)(∂νy∂τy).
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Due to the geometric conditions imposed on Γ, we have
∫ T

0

∫

Γ
∂νy(2m · ∇y)−

∫ T

0

∫

Γ
(m · ν)|∇y|2 ≤

∫ T

0

∫

Γ1

(m.ν)(∂νy)
2 +

R2

ω

∫ T

0

∫

Γ1

(∂νy)
2(3.50)

≤ (R+
R2

ω
)

∫ T

0

∫

Γ1

(∂νy)
2.

Hence (3.48) leads to

2

∫ T

0

∫

Ω
|yt|2 +

[∫

Ω
yt2m · ∇y

]T

0

≤
∫ T

0

∫

Γ1

(m · ν)|yt|2 + (R+
R2

ω
)

∫ T

0

∫

Γ1

(∂νy)
2. (3.51)

Adding (3.49) to (3.51), we obtain

∫ T

0

∫

Ω
|yt|2 +

∫ T

0

∫

Ω
|∇y|2 +

[∫

Ω
yt2m · ∇y

]T

0

+

[∫

Ω
yty

]T

0

−
∫ T

0

∫

Γ
(ν · ∇y)y (3.52)

≤
∫ T

0

∫

Γ1

(m · ν)|yt|2 + (R+
R2

ω
)

∫ T

0

∫

Γ1

(∂νy)
2.

Note moreover that

[∫

Ω
yt2m · ∇y

]T

0

+

[∫

Ω
yty

]T

0

& −E(0), and

∫ T

0

∫

Γ1

∂νyy ≤ 1

2ǫ

∫ T

0

∫

Γ1

(∂νy)
2 +

ǫ

2

∫ T

0

∫

Γ1

y2 ≤ 1

2ǫ

∫ T

0

∫

Γ1

(∂νy)
2 +

cpǫ

2

∫ T

0

∫

Ω
|∇y|2.

We deduce that for ǫ > 0 chosen small enough there exists C > 0 such that

(T − C1)‖v0‖2H − 1

a

∫ T

0

∫

Γ1

|yt|2 −
∫ T

0

∫

Γ1

|η|2 ≤ (R+
R2

ω
+

1

2ǫ
)

∫ T

0

∫

Γ1

(∂νy)
2 (3.53)

+

∫ T

0

∫

Γ1

(m · ν)|yt|2,

which leads to the required result (3.45).

Second step. Let α > 0 and set

η1 =
1

a
(−∂νy − η) + 2αz + α2η

We have the following expression for |η1|2 on Γ1,

|η1|2 =
1

a2
|∂νy|2 + 4α2|z|2 + (aα2 − 1)2

a2
|η|2 − 4α

a
∂νyz +

2

a2
(1− aα2)∂νyη +

4α

a
(aα2 − 1)zη.

By the boundary condition on Γ1, ηt = z and ∂νy = −η − aηtt, we get

|η1|2 =
1

a2
|∂νy|2 + 4α2|z|2 + (−1 + aα2)(1 + aα2)

a2
|η|2 + 4α3ηηt + 4αηtηtt +

2
(
−1 + aα2

)

a
ηηtt.
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Thus

∫ T

0

∫

Γ1

|η1|2ds =

∫ T

0

∫

Γ1

[
1

a2
|∂νy|2 + (4α2 − 2(−1 + aα2)

a
)|z|2 + (−1 + aα2)(1 + aα2)

a2
|η|2]ds

+2α3

∫

Γ1

(η(T )2 − η(0)2)ds+ 2α

∫

Γ1

(ηt(T )
2 − ηt(0)

2)ds+ (3.54)

2(−1 + aα2)

a

∫

Γ1

η(T )ηt(T )ds−
2(−1 + aα2)

a

∫

Γ1

η(0)ηt(0))ds.

Choosing α large enough, we get

w1 =
1

a2
> 0, w2 = 4α2 − 2(−1 + aα2)

a
=

2(1 + aα2)

a
> 0, w3 =

(−1 + aα2)(1 + aα2)

a2
> 0.

In addition, (3.54) implies that

∫ T

0

∫

Γ1

|η1|2ds ≥
∫ T

0

∫

Γ1

[w1|∂νy|2 + w2|z|2 + w3|η|2]ds−Ka,α‖v0‖2H,

for some constant Ka,α ≥ 0 independent of T .
Combining the previous inequality with (3.45), we deduce the existence of c1 > 0 such that

∫ T

0

∫

Γ1

|η1|2ds ≥ c1(T − C)‖v0‖2H −Ka,α‖v0‖2H.

Finally, choosing T large enough, we obtain

∫ T

0

∫

Γ1

|η1|2ds =
∫ T

0

∫

Γ1

∣∣∣∣
1

a
(−∂νy − η) + 2αz + α2η

∣∣∣∣
2

ds ≥ c2‖v0‖2H, (3.55)

for some positve constant c2 depending on T .
Last step. Let u0 ∈ D(Ad) and let u1 = (y1, ζ1, z1, ξ1, η1)

⊤ be the corresponding solution of
(3.42), then

v = (y, ζ, z, ξ, η)⊤ = [(Ac + αI)2]−1u,

is a solution of (3.44) where v0 = [(Ac+αI)
2]−1u0 ∈ D(Ac). Since (Ac+αI)

2 = A2
c+2αAc+α

2I,
the last component η1 of u1 is given by

η1 =
1

a
(−∂νy − η) + 2αz + α2η,

thus by the two previous steps we get (3.55). Noting that ‖u0‖D(Ac) ∼ ‖v0‖H, we consequently
deduce that (3.43) holds for all u0 ∈ D(Ac).

Theorem 3.6.8 Let u0 ∈ D(Ad) and let u be the solution of (3.41). Then u satisfies,

‖u(t)‖2 . 1

(1 + t)
1
2

‖u0‖2D(Ad)
. (3.56)
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Proof. Since the operator D ∈ L(U), Lemma 3.3.1 holds true.

Set H1 = D(Ac) and H2 = D(A−2
c ). Then H = [H1;H2]1/3. By Lemma 3.6.7, we have

∫ T

0
‖D∗u1(s)‖2Uds ≥ cT ‖u0‖2H2

.

By Theorem 3.5.1 applied for θ = 1/3, we therefore obtain (3.56).

Remark 3.6.9 Using the same method we get an analogous result for the one dimensional prob-
lem. we can also get the observability inequality by a spectrum analysis and that was already done
in the paper [34], where the authors obtained an optimal decay, thus we expect the decay in the
two dimensional case to be optimal as well.

Remark 3.6.10 Consider the following system studied in chapter 1 (see [2])





ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0,
y(0, t) = 0, t > 0,
yx(1, t) + (η(t), C0)Cn = 0, t > 0,
ηt(t)−B0η(t)− C0yt(1, t) = 0, t > 0,

(3.57)

and
y(x, 0) = y0(x), yt(x, 0) = y1(x), η(0) = η0, 0 < x < 1,

where B0 ∈ Mn(C), C0 ∈ Cn are given. System (3.57) can be written in the form (3.1) where
V = {y ∈ H1(0, 1) : y(0) = 0}, X = L2(0, 1) and U = Cn. In this case, Ĉ = B0 is a bounded
operator and Bη = (η, C0)δ1 for all η ∈ Cn. Indeed, since Ĉ is bounded then it is enough to
verify assumption (O). Assumption (O) was verified in [2] and the polynomial stability of (3.57)
was deduced. In particular, for n = 1 we obtain the system studied in [53], where a polynomial
decay is proved using a mutltiplier method. The polynomial decay can be also obtained by proving
an observability inequality for the solutions of the corresponding conservative system which is
exactly what has been verified in [2], thus applying the appraoch intoduced in this chapter .

3.6.1 Unbounded example

Consider the following system




utt(x, t)− uxx(x, t) + w(x, t) = 0, t ∈ [0,∞), 0 < x < 1
wt(x, t)− iwxx(x, t) + w(ξ, t)δξ − ut(x, t) = 0, t ∈ [0,∞), 0 < x < 1
u(0, t) = u(1, t) = w(0, t) = w(1, t) = 0, t ∈ [0,∞),
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), w(x, 0) = w0, 0 < x < 1,

(3.58)

where ξ ∈ (0, 1). Define the following spaces and operators:

X = U = L2(0, 1), V = H1
0 (0, 1), U = L2(0, 1),W = C,

A : u ∈ D(A) → −uxx ∈ L2(0, 1), D(A) = H2(0, 1) ∩H1
0 (0, 1),

and B = B∗ = IU = IL2(0,1). In addition,

D : η ∈ C → ηδξ ∈ (D(C))′, D∗ : w ∈ D(C) → w(ξ) ∈ C,
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and
C : w ∈ D(C) → −iwxx ∈ L2(0, 1), D(C) = H2(0, 1) ∩H1

0 (0, 1).

The operator Ĉ is thus given by
Ĉw = iwxx − w(ξ)δξ

with

D(Ĉ) = {w ∈ H1
0 (0, 1) ∩ [H2(0, ξ) ∩H2(ξ, 1)] : i[wx]ξ = i[wx(ξ

+)− wx(ξ
−)] = w(ξ)}.

As the operator D is unbounded, we need to verify that the problem satisfies assumption (H)
as well as the asumption (O) for conservative problem. In this case we have

D(Ad) = D(A)× V ×D(Ĉ)

and
D(Ac) = D(A)× V ×D(C).

In order to verify the assumption (H), we proceed by finding the transfer function, for this
purpose we recall that u2 = u− u1 and w2 = w − w1 satisfies (3.15) which is in this case





∂ttu2 − ∂xxu2(x, t) + w2(x, t) = 0, t ∈ [0,∞), 0 < x < 1
∂tw2(x, t)− i∂xxw2(x, t)− ∂tu2 = w(ξ, t)δξ, t ∈ [0,∞), 0 < x < 1
u2(0, t) = u2(1, t) = w2(0, t) = w2(1, t) = 0, t ∈ [0,∞),
u2(x, 0) = 0, ∂tu2(x, 0) = 0, w2(x, 0) = 0, 0 < x < 1,

(3.59)

and




∂ttu1 − ∂xxu1(x, t) + w1(x, t) = 0, t ∈ [0,∞), 0 < x < 1
∂tw1(x, t)− i∂xxw1(x, t)− ∂tu1 = 0, t ∈ [0,∞), 0 < x < 1
u1(0, t) = u1(1, t) = w1(0, t) = w1(1, t) = 0, t ∈ [0,∞),
u1(x, 0) = u0, ∂tu1(x, 0) = u1w2(x, 0) = w0, 0 < x < 1,

(3.60)

Verifying the assumption (H) is equivelant to verifying (see [9, Proposition 3.2] for more details)

|w2(ξ, t)|2 . |w(ξ, t)|2.

For this purpose, we state the following proposition.

Proposition 3.6.11 Let (u2, w2) = (u− u1, w−w1) be the solution of (3.59). Then w2 verifies

|w2(ξ, t)|2 ≤ |w(ξ, t)|2.

Proof. Let λ = 1 + iη and consider û2, ŵ2 the Laplace transforms of u2 and w2 respectively.
Then û2 and ŵ2 satisfies (3.16) given by

{
λ2û2(x, λ)− ∂xxû2(x, λ) + ŵ2(x, λ) = 0,
λŵ2(x, λ)− i∂xxŵ2(x, λ)− λû2 = ŵ(ξ, λ)δξ,

(3.61)

The problem reduces to studying û2 and ŵ2 solutions of
{
λ2û2 − ∂xxû2 + ŵ2 = 0
λŵ2 − i∂xxŵ2 − λû2 = −iδξ

(3.62)
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with
û2(0) = û2(1) = 0, ŵ2(0) = ŵ2(1) = 0, [∂xŵ2]ξ = 1, [ŵ2]ξ = 0,

and proving the existence of Cβ > 0

|ŵ2(ξ, λ|) ≤ Cβ , ∀λ = β + iy, y ∈ R.

First, we set
ŵ2 = ŵ3 + ŵ4,

where
λŵ3 − i∂xxŵ3 = −iδξ, (3.63)

with
ŵ3(0) = ŵ3(1) = 0, [∂xŵ3]ξ = 1, [ŵ3]ξ = 0. (3.64)

and
λŵ4 − i∂xxŵ4 = λû2. (3.65)

with
ŵ4(0) = ŵ4(1) = 0. (3.66)

Let β > 0 be fixed. It is required then to prove that

|ŵ3(ξ, λ)| ≤ C1β , |ŵ4(ξ, λ)| ≤ C2β , ∀λ = β + iy, y ∈ R.

We start by writing the expression of ŵ3,

ŵ3(x, λ) = −
+∞∑

k=1

√
2 sin(kπξ)

k2π2 − iλ

√
2 sin(kπx) = −2

+∞∑

k=1

| sin(kπξ)|2
k2π2 − iλ

.

For simplicity we consider λ = 1± iπ2y2.

|ŵ3(ξ, λ)| .
+∞∑

k=1

1

|(k2 ± y2)π2 − i| .

We first give an estimate for λ = 1 + iπ2y2,

|ŵ3(ξ, λ)| .
+∞∑

k=1

1

(k2 + y2)π2
≤ 1

6
.

For λ = 1− iπ2y2, we have

|ŵ3(ξ, λ)| ≤
2

π2


 ∑

1≤k≤E(y)−1

1

y2 − k2
+ 2π2 +

∑

E(y)+2≤k

1

k2 − y2


 .

But ∑

1≤k≤E(y)−1

1

y2 − k2
≤

∑

1≤k≤E(y)−1

E(y)− k

E(y)2 − k2
=

∑

1≤k≤E(y)−1

1

E(y) + k
≤ 1.
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and
∑

E(y)+2≤k

1

k2 − y2
=

∞∑

k=2

1

(k + E(y))2 − y2
≤

∞∑

k=2

1

(k − 1)2
=
π2

6
.

Therefore |ŵ3(ξ, λ)| is bounded on the line ℜ(λ) = 1.

It remains to find the estimate satisfied by ŵ4(ξ, λ). Indeed, since (
√
2 sin(kπx))k∈N∗ form a

Hilbert basis of L2(0, 1), then we may write û2, ŵ2, ŵ4 as follows

û2(x, λ) =
+∞∑

k=1

u
(k)
2

√
2 sin(kπx), ŵ2 =

+∞∑

k=1

w
(k)
2

√
2 sin(kπx), ŵ4 =

+∞∑

k=1

w
(k)
4

√
2 sin(kπx).

By the first equation of (3.62), we get

∀k ≥ 1, u
(k)
2 =

w
(k)
2

k2π2 + λ2
.

Due to (3.65)

∀k ≥ 1, w
(k)
4 =

λu
(k)
2

ik2π2 + λ
.

We deduce that

w
(k)
4 = − λw

(k)
2

(k2π2 + λ2)(ik2π2 + λ)
.

For λ = 1 + iy we have

|k2π2 + λ2| =
√
4y2 + (1 + k2π2 − y2)2 ≥ 2|y|,

and
|ik2π2 + λ| = |1 + ik2π2 + iy| ≥ |y|.

Hence for |y| large enough we have

|w(k)
4 | ≤ |w(k)

2 |
|y| .

Using ŵ2 = ŵ3 + ŵ4 we get for |y| large enough

|w(k)
4 | ≤ |w(k)

3 |
|y| .

We finally conclude that for |y| large enough |ŵ4(ξ, λ)| is bounded on the line ℜ(λ) = 1. It
follows that |ŵ2(ξ, λ)| is bounded as well.

In what follows we prove that the observability assumption (O) holds on subspaces of D(Ad)
on which we deduce the polynomial stability of the energy. Let us first remark that 0 is not an
eigenvalue of Ad. Let λ = iµ an eigenvalue of Ad and U = (u, v, w) a corresponding eigenvector.
We then have,
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{
−µ2u− ∂xxu+ w = 0
µw − ∂xxw − µu = iw(ξ)δξ.

(3.67)

with
u(0) = u(1) = w(0) = w(1) = 0.

Multiplying the second equation by w then integrating by parts on (0, 1), we find that w(ξ) = 0.
We hence deduce that w = 0. Moreover, multiplying the first equation by u, integrating by parts
and considering the imaginary part we deduce that u = 0.

In order to verify the observability assumption (O) we study in what follows the spectrum of
Ac. Recall that the eigenvalues of Ac are of the form λ = iµ, µ ∈ R.

Proposition 3.6.12 Let σ(Ac) be the set of eigenvalues of Ac. Then
(i) Every element of σ(Ac) is simple and σ(Ac) is a disjoint union of three sets:

σ(Ac) = σ0 ∪ σ1 ∪ σ2

where σ0 is a finite set, and there exists k0 ∈ N∗ such that σ1 = {iµk,1}k∈Z,|k|≥k0 , and σ2 =
{iµk,2}k∈N,k≥k0 .

(ii) For iµk,i ∈ σi, i = 1, 2, an associated eigenvector φµk,i
=

1

|k|αi
(uµk,i

, vµk,i
, wµk,i), with

α1 = 1 and α2 = 4 is given by

uµk,i
(x) = sin(kπx), vµk,i

(x) = iµk,iuµk,i
(x), wµk,i

(x) = (µ2k,i − k2π2) sin(kπx).

(iii) The following estimates hold

µk,1 = kπ +
1

2π2k2
+ o(

1

k2
), |k| → ∞, (3.68)

‖φµk,1
‖H ∼ 1, (3.69)

µ2k,1 − k2π2 =
1

kπ
+ o(

1

k
), (3.70)

µk,2 = −k2π2 +O(
1

k2
), k → +∞, (3.71)

‖φµk,2
‖H = O(1), (3.72)

µ2k,2 − k2π2 = k4π4 +O(k2). (3.73)

Proof. Let λ = iµ be an eigenvalue of Ac and U = (u, λu,w) be a corresponding eigenvector of
Ac. Then u and w satisfies {

−µ2u− ∂xxu+ w = 0
µw − ∂xxw − µu = 0.

(3.74)

Replacing w in the second equation, we find that
{
∂xxxxu+ (µ2 − µ)∂xxu+ (µ− µ3)u = 0,
u(0) = ∂xxu(0) = u(1) = ∂xxu(1) = 0.

(3.75)

It is easy to check that µ = 0, µ = 1 and µ = −1 are not eigenvalues of Ac.
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Let X1 =
1

2
(µ− µ2 −

√
∆) and X2 =

1

2
(µ− µ2 +

√
∆) be the roots of

p(X) = X2 + (µ2 − µ)X + µ− µ3 = 0,

where ∆ = µ(µ− 1)(µ2 + 3µ+ 4) is the discriminant of p.
Set ti =

√
Xi, i = 1, 2 then the general form of u satisfying the first equation of (3.75) and the

left boundary condition is
u(x) = c1 sinh(t1x) + c2 sinh(t2x).

Considering the right boundary conditions we see that u is non trivial if and only if t1 and t2
satisfy

sinh(t1) sinh(t2)(t
2
1 − t22) = 0.

But t21 − t22 6= 0, since µ 6= 0 and µ 6= 1. Hence t1 and t2 satisfy the following characteristic
equation

sinh(t1) sinh(t2) = 0,

which gives that t1 = ikπ or t2 = ikπ, k ∈ Z∗ i.e X1 = −k2π2 or X2 = −k2π2.

Now, we remark that all the eigenvalues of Ac are simple. Suppose otherwise that there exists
a double eigenvalue, then there exist ki,∈ N∗, i = 1, 2 s.t Xi = −kiπ2, i = 1, 2. Thus we have

X1X2

X1 +X2
= − k21k

2
2π

2

k21 + k22
= µ+ 1.

Now, replacing µ in X1 +X2 = µ− µ2, we find that

2k41 + 4k21k
2
2 + 2k42 − k61π

2 − k62π
2 + k41k

4
2π

4 = 0,

which is impossible since π2 is a transcendental number.
Therefore,

u(x) = sin(kπx), w(x) = (µ2 +Xi) sin(kπx), i = 1 or 2.

Moreover, the eigenvalues of Ac are formed of two disjoint families of eigenvalues. The first class
of eigenvalues is obtained from X1 = −k2π2, the second class is obtained from X2 = −k2π2.

Now, we firstly study the asymptotic behaviour of the first class:

since X1 = −µ2 + 1

µ
+ o(

1

µ
) = −k2π2 then µ = kπ +

1

2π2k2
+ o(

1

k2
), |k| → ∞. If we denote by

{iµk,1}k∈Z∗ this first class of eigenvalues then the previous estimate is (3.68). Using the previous
estimate we directly get (3.69) and (3.70).

Secondly, since X2 = µ + O(
1

µ
) = −k2π2 we deduce that the large eigenvalues of the second

class are negative, and denoting them by iµk,2 we easily see that (3.71) holds true. Moreover,
since µ2k,2 − k2π2 = O(k4) then (3.72) holds.

In order to use generalized Inghams inequalities we need to estimate inf
µk,1∈σ1,µk′,2∈σ2

|µk,1−µk′,2|.
Unfortunately it seems to be a difficult task and it remains an open question. Hence, to get an
observability result we will take the initial condition U0 in some subspaces of H. For this purpose
we introduce
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H1 = span(φµ)µ∈σ0 ∪ span(φµ)µ∈σ1 and H2 = span(φµ)µ∈σ0 ∪ span(φµ)µ∈σ2 .

Before giving an observability result we introduce the set S of all numbers ρ ∈ (0, π) such that
ρ

π
/∈ Q and if [0, a1, ..., an, ...] is the expansion of

ρ

π
as a continued fraction, then (an) is bounded.

Recall that if πξ ∈ S then

| sin(kπξ)| & 1

|k| , k ∈ Z∗, (3.76)

(see for instance [8]).

Proposition 3.6.13 1. For all ξ ∈ (0, 1) there are no T,C > 0 such that for all U0 ∈ H we
have ∫ T

0
|w(ξ, t)|2dt ≥ CT ‖U0‖2H. (3.77)

2. Suppose that ξ ∈ S.
Let U0 ∈ H1 and U = (u, v, w) be the corresponding solution of the conservative problem

Ut = AcU,U(0) = U0. (3.78)

Then there exists T>0 and a constant cT > 0 such that

∫ T

0
|w(ξ, t)|2dt ≥ CT ‖U0‖2D(A−3

c )
, (3.79)

where D(A−3
c ) = (D(A3

c))
′, obtained by means of the inner product in X.

For U0 ∈ H2 we have

∫ T

0
|w(ξ, t)|2dt ≥ CT ‖U0‖2

D(A− 1
2

c )
. (3.80)

Proof.

1. Since
lim

n→+∞
‖(iµn,1 −Ac)φn,1‖2H +

∥∥( 0 0 D∗ )
φn,1

∥∥2
U
= 0.

Which implies according to [36, Theorem 5.1] that we don’t have the exact observability,
i.e., the inequality (3.77).

2. Let U0 ∈ H1. We may write

U0 =
∑

µ∈σ0

uµ0φµ +
∑

|k|≥k0

u
(k)
0 φµk,1

.

Moreover,

w(ξ, t) =
1

|k|


∑

µ∈σ0

uµ0e
iµtwµ(ξ) +

∑

|k|≥k0

u
(k)
0 eiµk,1twµk,1

(ξ)


 .

Note that γ1 = inf
µ,µ′∈σ,µ 6=µ′

|µ − µ′| > 0, then using Ingham’s inequality there exists T >

2πγ1 > 0 and a constant cT > 0 depending on T such that
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∫ T

0
|w1(ξ, t)|2dt ≥ cT

1

|k|


∑

µ∈σ0

|uµ0wµ(ξ)|2 +
∑

|k|≥k0

|u(k)0 wµk,1
(ξ)|2


 .

Now using (ii), and estimates (3.68),(3.69), (3.70) of Proposition 3.6.12 we get (3.79). For
U0 ∈ H2, we use analogous argument.

Theorem 3.6.14 1. For any ξ ∈ (0, 1), the system described by (3.58) is not exponentially
stable in H.

2. Let U0 ∈ H1 ∩ D(Ad), and let U be the solution of the corresponding dissipative problem

Ut = AdU, U(0) = U0.

Then U satisfies,

‖U(t)‖2 . 1

(1 + t)
1
3

‖U0‖2D(Ad)
. (3.81)

3. Let U0 ∈ H2 ∩ D(Ad), and let U be the solution of the corresponding dissipative problem

Ut = AdU, U(0) = U0.

Then U satisfies,

‖U(t)‖2 . 1

(1 + t)2
‖U0‖2D(Ad)

. (3.82)

Proof.

1. This result is a direct consequence of the first assertion of Proposition 3.6.13 and Theorem
3.4.1.

2. Due to Proposition 3.6.11 and Proposition 3.6.13 we deduce (3.81) from Theroem 3.5.1
setting H1 = D(Ac) and H2 = D(A−3

c ) and θ = 1
4 .

3. As in 2. we deduce (3.82) setting H1 = D(Ac) and H2 = D(A− 1
2

c ) and θ = 2
3 .
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