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Abstract

In this thesis, we study the stabilization of some evolution equations by feedback laws. In the
first chapter we study the wave equation in R with dynamical boundary control applied on a
part of the boundary and a Dirichlet boundary condition on the remaining part. We furnish
sufficient conditions that guarantee a polynomial stability proved using a method that combines
an observability inequality for the associated undamped problem with regularity results of
the solution of the undamped problem. In addition, the optimality of the decay is shown in
some cases with the help of precise spectral results of the operator associated with the damped
problem. Then in the second chapter we consider the system on a domain of R%, d > 2. In
this case, the domain of the associated operator is not compactly embedded into the energy
space. Nevertheless, we find sufficient conditions that give the strong stability. Then, we discuss
the non uniform stability as well as the polynomial stability by two methods. The frequency
domain approach allows us to establish a polynomial decay on some domains for which the
wave equation with the standard damping is exponentially or polynomially stable. Finally, in
the third chapter we consider a general framework of second order evolution equations with
dynamical feedbacks. Under a regularity assumption we show that observability properties for
the undamped problem imply decay estimates for the damped problem. We finally illustrate our
general results by a variety of examples.

Keywords. Acoustics, stability, evolution equations, observability, Riesz basis, wave equation.






Résumeé

Dans cette thése, nous étudions la stabilisation de certaines équations d’évolution par des lois
de rétroaction. Dans le premier chapitre nous étudions I’équation des ondes dans R avec condi-
tions aux limites dynamiques appliquées sur une partie du bord et une condition de Dirichlet
sur la partie restante. Nous fournissons des conditions suffisantes qui garantissent une stabilité
polynomiale en utilisant une méthode qui combine une inégalité d’observabilité pour le probléme
non amorti associé avec des résultats de régularité du probléme non amorti. L’optimalité de la
décroissance est montrée dans certains cas a l'aide des résultats spectraux précis de 'opérateur
associé. Dans le deuxiéme chapitre nous considérons le systéme sur un domaine de R?, d > 2. On
trouve des conditions suffisantes qui permettent la stabilité forte. Ensuite, nous discutons de la
stabilité non uniforme ainsi que de la stabilité polynomiale. L’approche en domaine fréquentiel
nous permet d’établir une décroissance polynomiale sur des domaines pour lesquels I’équation des
ondes avec I'amortissement standard est exponentiellement ou polynomialement stable. Dans le
troisiéme chapitre nous considérons un cadre général d ’équations d’évolution avec une dissipation
dynamique. Sous une hypothése de régularité, nous montrons que les propriétés d’observabilité
pour le probléme non amorti impliquent des estimations de décroissance pour le probléme amorti.

Mots-clés. Stabilité, équations d’évolution, observabilité, base de Riesz, équation des ondes.
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Introduction

Control theory is the study of the process of controlling the behavior of an operator system
to achieve a certain target. Its application ranges widely from earthquake engineering and
seismology to fluid transfer, cooling water and noise reduction in cavities, vehicles, such as
pipe systems. Acoustics, aeronautics, hydraulics, are also some of the diverse disciplines where
control theory is applied. Of the most important notions in modern systems and control theory
we mention controllability, stabilizability and observability. Various types of those notions have
been introduced for abstract systems defined on Banach or Hilbert spaces and the relations
between them has been extensively explored by several authors.

Roughly speaking, the concept of controllability is defined as an ability to do whatever
we want with our system. In more technical terms, it is described as the ability to steer
our evolution system, whether described in terms of partial or ordinary differential equa-
tions, from any initial state to any desired final state in a finite time interval by means of
a suitable control (boundary control, internal control, controls localized on open subsets of
bounded sets, etc...). The definition of the same concept varies according to the framework
or the type of models on which it is applied. The three types of controllability that are
mainly defined are exact controllability, null controllability and asymptotic controllability
(see [24]). The differences between those definitions are examined for both finite dimensional
systems and infinite dimensional systems for time reversible systems (e.g. wave equation)
as well as time irreversible systems (e.g. heat equation). In general the different types
of controllability are not equivalent. The relations between these concepts were studied and
several results on this subject were obtained (see for instance the works of Micu and Zuazua [35]).

Observability is a measure for how well internal states of a system can be inferred by
knowledge of its external outputs. The duality between the controllability and observability
of systems of partial differential equations in Banach spaces has been examined in many
works such as those of Lions [30] where Hilbert uniqueness theorem HUM is explained (see
also [39]), and the works of Russell and Dolecki and Russell [22,45,47|. Various methods
could be used to prove observability inequalities such as Carleman estimates, microlocal
analysis and the multiplier method. For more details on the treatment of observability problems
and proving observability inequalities for linear systems, we refer the reader to [55], [52], and [30].

As for stabilizability, it is defined as the ability to find an input control that requires the state
response to approache zero as time t — oco. Different types of stability also occurs. The details

of the notions of stability used in our thesis are explained below.

In order to introduce the main theme of our study, the used method and the obtained results
let us recall some of the fundamental definitions that are being used throughout the thesis.

iii



Introduction

Definition 0.1 Let X be a Banach space. A one parameter family (S(t))i>0 of bounded linear
operators defined from X into X is a strongly continuous semigroup of bounded linear operators
on X if:

e S(0) = 1,(I identity operator on X ).

o S(t+s) = S5(t)S(s) for every t,s > 0.

e S(t)xr =z, ast — oo, Vo € X.

Such a semigroup is called a Cy-semigroup.

Definition 0.2 The infinitesimal generator A of the semigroup (S(t))t>o is defined by:

D(A) = {z € X| lim We:cists}

t—o00

and 5
M’ z € D(A).

Az = lim

t—o0

Definition 0.3 Let H be a Hilbert space. An operator (A, D(A)) on H satisfying
R(Au,u) < 0,Yu € D(A),

is said to be a dissipative operator. A mazximal dissipative operator (A, D(A)) onH is a dissipative
operator for which R(AN — A) = H, for some A > 0. A mazximal dissipative operator is also called
m-dissipative operator.

Generally speaking, the first step in dealing with the study of the stability of the solution is
to rewrite our evolution system of partial differential equations as a Cauchy problem on some
appropriate Hilbert space H called the energy space

U=AU, U(0)="Uj. (1)

where A is an unbounded operator on H. Then we prove that A is the infinitesimal generator
of a Cp-semigroup of contractions (S(t));>0 on H in order to deduce the existence of a solution
in a certain Hilbert space. The solution is hence of the form U(t) = S(t)Uy. We mention here
Lumer-Phillips theorem (see [32|) which is applied to justify the existence and uniqueness of
solutions of some partial differential equations.

Theorem 0.4 (Lumer-Phillips theorem) Let A be a linear operator with dense domain
D(A) in a Banach space X .
(a) If A is dissipative and there exists \g > 0 such that R(Aol — A) = X then A is the
infinitesimal generator of a Cy-semigroup of contractions on X.
(b) If A is the infinitesimal generator of a Cy-semigroup of contractions on X then R(A[—A) =
X for all A > 0 and A is dissipative.

Consequently, A is maximal dissipative on a Hilbert space H if and only if it generates a Cy-
semigroup of contractions on H and thus the existence of the solution is justified by the following
corollary which follows from Lumer-Phillips theorem.

v
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Corollary 0.5 Let H be a Hilbert space and let A be a linear operator defined from D(A) C H
into H. If A is mazimal dissipative then the initial value problem

{ )y = Au(t), t>0
u(0) = wup

has a unique solution u € C([0,400),H), for each initial datum ug € H. Moreover, if ug € D(A),
then
u € C([0,+00), D(A)) N CH([0, +00), H).

After proving the well posedness of the systems introduced in the chapters of the thesis, we
aim to discuss the type of stability of the solution of the systems formulated as (1). We in-
troduce here the notions of stability that we encounter in this work (see [15] and [14] for instance).

Assume that A is a generator of a strongly continuous semigroup of contractions on a Hilbert
space H. We say that the semigroup (S(¢))¢>0 generated by A is
e Strongly (asymptotically) stable if for all Uy € H

1S Uolln — 0.
e Exponentially stable if there exist two positive constants C,w such that
1S Ui < Ce™H|Up||2, VE > 0,VUy € H.
e Polynomially stable if there exist constants «, 8,C > 0 such that
1S(#)(d— A~ <Ct P, t >0,

for some d > 0.

Clearly the definitions of the different kinds of stability could be introduced for the energy of
the solution of (1) defined by E(t) = 1||U(t)||*.

In order to show the strong stability of U(t) = S(t)Uy we study the spectrum of the operator
A of (1) and we show that the only pure imaginary elements of its spectrum are countable
and belong exclusively to its essential spectrum. The asymptotic stability is thus deduced by
Arendt-Batty Theorem (see 10| and Theorem 1.3.1 in the first chapter). The discussion of
the type of stability achieved by our systems is detailed later and is based in the first chapter
on the analysis of the spectrum of the operator of a conservative operator associated with the
dissipative operator in order to obtain an observability inequality using Ingham’s inequality
(see [11]). While in the second chapter we introduce, as in [38], a Lyapunov functional or a
resolvent method from [19] (see also [15]) to find appropriate estimates on the energy. We
moreover use Huang-Priiss Theorem (see [23,26,43|) and a result of [44] (see also [50]) to prove
the nonuniform stability in certain cases.

Let us now briefly explain the contents of our thesis. This thesis is divided into three chapters.
The aim of the first and second chapter is to study the stability of the wave equation defined on
an open connected bounded set Q of R? d > 1 with a boundary 92 = I assumed to be divided
into two disjoint parts I'g and I'y , where I'y is assumed to be closed with a nonempty interior and
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I'y relatively open in I' which could be possibly empty for d > 1. A clamped boundary condition
is assumed to be satisfied on a part I'; of the boundary and a dynamic boundary condition on
the second part I'g. More precisely, we consider the system defined by

ye(x,t) — Ay(x,t) =0 , v € t>0,
y(z,t) =0 e el t>0, @)
W (2,t) = (6(x,1),0C) , € Do t >0,

de(z,t) = Bé(z,t) — Cye(x,t) ,x€To,t>0,
with the following initial conditions:

y(z,0) = yo(z), ye(z,0) = yi(z), z€Q, (3)
d(z,0) = dp(x), z € Ty,

where (-,-) an inner product on C" with n > 1, B € M,(C), C € C" if d = 1 and
C € CYY(Ty,C") and B € C(Ty, M, (C)) if d > 1.

The damping of the system is made via the indirect damping mechanism on the part I'g that
involves a first order differential equation in the variable §. The notion of indirect damping
mechanisms has been introduced by Russell in [49] and retains the attention of many authors
(see for instance |[5,6,48|). In addition, different models from acoustic theory enter in this
framework.

The case n = 1 was considered in [53| (d = 1) and in [50| (d > 2) where a polynomial
decay in % was proved for initial data in the domain of the associated operator by using the
multiplier method, leading to strong geometrical assumption on I'g. In the case n > 2, the third
and fourth equations in (2) are general versions of the so-called acoustic boundary conditions,
introduced for n = 2 in [17|. Acoustic boundary conditions arise in many physical applications,
in particular they occur in theoretical acoustics, where a part of the boundary is not rigid but
subject to small oscillations, see |16, 18,31, 37, 38| and the references therein for more details.
Absorbing boundary conditions like in [13] are stronger and lead to exponential decay of the

energy, but they do not enter into our framework.

The stability of the wave equation with acoustic boundary condition was first studied by Beale
in [16] where he discusses the strong stability of the system,

Pe(2, 1) — AP(, 1) = 0, 2€Q,t>0
m(z,t) — 92 (a,t) = 0, x€Tyt>0 (4)
m(z)nu(z, t) + d(z)n(z, t) + k(x)n(z, t) + poe(xz,t) = 0, z€ly t>0

with m, d, k are positive sufficiently smooth functions defined on I'y . In this case, I'y = () and
system (4) can be formulated for ¢ = 1 as (2)by taking

o= (G ) =)
—o5=(") B= o .
! (nt) (—,’Z i 0

The third condition of (4) is the acoustic boundary condition introduced in [17]. In [38], Rivera
and Qin studied the stability of (2) on Q C R3 with boundary

00 =TqUI',TyNI; =0, and meas I'; # 0,

vi
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assuming moreover the existence of a point xo € R? such that
I'' ={zel|(x—x9)r <0}, To={z e|(z—x0).v>a>0},

for some constant ¢ > 0. By introducing an appropriate Lyapunov function, the authors prove
that the energy decays polynomially with a decay rate of % In [31], the authors consider
the wave equation on Q C R? with acoustic boundary condition on one part of the bound-
ary but replacing the Dirichlet boundary condition on I'y by a Neumann boundary condition.
Again the authors obtain a polynomial decay rate depending on the regularity of the initial data.

In the first chapter we study the stability of (2) for Q = (0,1) with I'y = 0,9 = 1. Then,
system (2) is given by

Yie(2,1) — Yoo (w,1) = 0, O0<z<1,t>0,

y(0,1) = 0, t>0, )
Yz (1,t) — (6(2), C)cr = 0, t>0,

(St(t) — B(S(t) + Cyt(l,t) = 0, t>0,

Using the compact perturbation result of Russell [46], the dissipative system (5) is not uniformly
stable (see section 1.4.1 of the first chapter and [37, Rk 2|). Hence we are interested in proving
a weaker decay of the energy. More precisely we will give sufficient conditions on B and C' that
yield the polynomial decay of the energy of our system (for initial data in the domain of the
associated operator). Contrary to [53] and [38] where a multiplier method is used, we here use
a technique, inspired from [8,34,41], that consists of combining an observability inequality for
the associated undamped problem obtained via sharp spectral results with regularity results of
the solution of the undamped problem with a specific right-hand side. Moreover, using a careful
spectral analysis of the operator associated with (5) we show in some particular situations that
our decay rate is optimal.

In the second chapter we study the stability of (2) for Q € R? with d > 1. We further assume
that the boundary 09 = I is Lipschitz and that that IyN T is of class C'! in the sense explained
in the second chapter. In a first step we try to find sufficient conditions that guarantee the strong
stability of the system. Here as the domain of the associated operator is not compactly embedded
into the natural energy space, we can expect that its spectrum is not only made up of eigenvalues.
We prove such a result in our general setting but since Dirichlet boundary conditions are imposed
on a part of the boundary, we were not able to use the single-layer potential technique of [16| and
instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C' as in
the one-dimensional case allow us to show that the associated operator has no eigenvalues on the
imaginary axis, hence we can obtain the strong stability by using Arendt-Batty theorem (see [10]
and Theorem 1.3.1). In dimension larger than 2, we can not apply the compact perturbation
result of Russell [46] (see also section 1.4.1 of the first chapter) in order to prove the non uniform
stability of (2). Nevertheless by using the spectral properties of the Laplace operator with specific
Robin boundary conditions on I'y, we will show that the resolvent of the associated operator is
not uniformly bounded on the imaginary axis and by the frequency domain approach [23,26,43|,
we will conclude that our system is not uniformly stable. Hence we are interested in proving a
weaker decay of the energy. More precisely we will give sufficient conditions on I'g, B and C
that yield the polynomial decay of the energy of our system (for initial data in the domain of

vil
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the associated operator). A first approach is to use a multiplier method like in [38,50, 53] but
this approach requires a quite strong geometrical assumption on I'g. Hence we alternatively use
the frequency domain approach from [19]. In that case, we prove some appropriate bound for
the resolvent on the imaginary axis by using the exponential or polynomial decay of the wave
equation with the standard damping
0 (2,0) =~y on T,

and an assumption on the behavior of R((isI — B)~1C, C) for all real number s with modulus
large enough. This leads to quite weaker geometrical assumption on I'g due to the results
from [12, §5] or [28,29] for instance. In particular in this second approach as I'; can be empty,
we significantly improve results from [16| and [38|.

In the third chapter, we study the stability of linear control problems coming from elasticity
which can be written as

2" (t) + Az(t) + Bu(t) = 0, t € 10,400)
W (t) — Cu(t) — B*2'(t) = 0, t e [0,400) (6)

z(0) = w0, 2'(0) = yo, w(0) = uo,

_l’_

where X and U are two complex Hilbert spaces, = : [0,+00) — X is the state of the system,
u € L?(0,T;U) is the input function, A is an unbounded positive self-adjoint operator on X,
B e £(U,D(A%)’ ) and C is a maximal dissipative operator on U. The second equation of the
considered system describes a dynamic control in some models. Some systems that can be
covered by the formulation (6) are for example the hybrid systems. System (2) considered in
the first chapter can be viewed as an application as well.

In this chapter we give sufficient conditions leading to the uniform or non uniform stability
of the solutions of the corresponding closed loop system. We first justify the well-posedness
of the problem then we write C as a sum of a skew-adjoint operator —C and a self-adjoint
operator —DD* and we prove under a regularity assumption that the observability properties,
described by assumption (O), of the undamped problem corresponding to replacing C by
—C in (6) imply decay estimates for the damped problem. We present in the last section
of this chapter illustrative examples as applications of the general setting where we obtain
polynomial or exponential energy decay rates. Finally, we note that we use a variety of methods
in verifying the observability assumption as well as a regularity assumption when ' is unbounded.

Note that the chapters of this thesis correspond to articles which have been published [2]| or
submitted [1,3,4]. Thus we have kept the general structure of the articles but just regrouping (3|
and [4] in one chapter.

Let us finish this introduction with some notation used in the remainder of the thesis: the

notation A < B and A ~ B means the existence of positive constants C7 and C5, which are
independent of A and B such that A < CyB and C1B < A < (9% B.

viii



1 Polynomial decay rate for a wave
equation with general acoustic boundary
feedback laws

1.1 Introduction

We consider the following one-dimensional evolution problem with a Dirichlet boundary con-
dition at one end and a dynamical control at the other one, described as follows:

Yir (7, 1) — Yuu (7, 1) = 0, 0<z<l1,t>0,
Yz (1,8) + (n(t), C)cn = 0, t>0, '
n(t) — Bn(t) — Cy(1,t) = 0, t>0,
with the following initial conditions:
y(lB,O) :yO(x)ayt(an) :yl(x)v 0<z <1, (1 2)
n(0) = no, '

where B € M, (C), C € C" are given, y represents the transverse displacement of the vibrating
string and 7 denotes the dynamical control variable. Define

V ={yeH(0,1):y(0) =0},
endowed with the following inner product (y, z)y = fol Yz Zzdz, and the energy space
H =V x L*0,1) x C",

endowed with the following inner product,

1

1
(92 ), (s 21, 10) )y = / Yeriada + / 2sda + (g, m) e,
0 0

with (-, -)cn an inner product on C" to be well determined. Denote by M the Hermitian positive

definite matrix associated with this inner product. For shortness we sometimes use the notation
(+,-) to denote (-,-)cn throughout the rest of the work.

The damping of the system is made via the indirect damping mechanism at the extremity 1
that involves a first order differential equation in 7. Using the compact perturbation result of
Russell [46], the dissipative system (1.1) is not uniformly stable (see section 1.4.1 and [37, Rk
2|). Hence we are interested in proving a weaker decay of the energy. More precisely we will give
sufficient conditions on B and C that yield the polynomial decay of the energy of our system
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(for initial data in the domain of the associated operator). Contrary to [53| and [38] where a
multiplier method is used, we here use a technique, inspired from (8,34, 41|, that consists of
combining an observability inequality for the associated undamped problem obtained via sharp
spectral results with regularity results of the solution of the undamped problem with a specific
right-hand side. Moreover, using a careful spectral analysis of the operator associated with (1.1)
we show in some particular situations that our decay rate is optimal.

The chapter is organized as follows. The second section deals with the well-posedness of the
problem obtained by using semigroup theory. Section 1.3 is devoted to the analysis of the strong
stability of the system. In section 1.4, we perform the spectral analysis of the operator associated
with the conservative system and deduce the polynomial stability of the dissipative system. The
optimality of the decay is considered in section 1.5. Finally some particular examples illustrating
our general framework are presented in section 1.6.

1.2 Well-posedness results

In order to solve system (1.1) we use a reduction order argument. Define the linear operator
A by
D(A) = {(y,z,n) € H*(0,1) NV x V x C" : (1) = —(n, C)en },

) z )
Al z| = Yo V| z] €D(A).
7 Bn + Cz(1) 7

We reformulate our problem into a Cauchy problem given by

= Au, u(0)=ug (1.3)
with u = (y,z,1m)" and ug = (yo,y1,m0)". We proceed by proving that A is m-dissipative. The
existence of a unique solution of problem (1.3) follows from Lumer-Phillips Theorem (see for
instance [42]).

Proposition 1.2.1 Suppose that
R(Bn,n)cn < 0,Vn € C". (1.4)

Then the operator A is m-dissipative, thus A generates a Cy-semigroup of contractions on H.

Yy
Proof. Let | z | € D(A), we have:
n
Y Y 1 1
Alz], |z = / zwywdx—i—/ Yz Zdx + (Bn+ Cz(1),n)cn
0 0
U H

1
g ( | zeda 0, 77)«:n> By nen.
0
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Hence R(AU,U) = R(Bn,n)cr < 0, and thus A is dissipative.
We would like to show that there exists A > 0 such that Al — A is surjective. Let A > 0 be given.

Clearly, we have A\ € o(B). For (y1,z1,m) € H, we look for (y,z,n) € D(A) such that

Y Y1
M-A)|z|l=1=].
n m

i.e. we are searching for y € H2NV,n € C" satisfying
yo(1) = —=(0,0),n = (M = B)™" (i + C (Ay(1) = 51(1))) ,

and the following strong problem:
Ny — Yoo = 21 + A1 = f1.
We now define the associated weak problem and we then prove that it admits a unique solution
using Lax-Milgram lemma. We state the weak problem as follows, find y € V satisfying
a(y, ¢) = L(p), VoeV (1.5)

where the conjugates of @ and L are given by
1 1
a(y, ») =/O A2ysodw+/0 YoPadz + (M — B)71C, C)en My(1)g(1),

1
L(p) = /0 frgde + (M= B)™Cun(1) — m1), C) o 3(1).

Clearly, V is a Hilbert space, L is a linear continuous functional defined on V' and a is a sesquilin-
ear continuous form on V. Finally, a is coercive since |a(y,y)| > Ra(y,y). Indeed,

1 1
aly,y) = N2 /0 e+ /0 lyel2dz + (M — B)™1C, C)Aly(1) 2,

and R(Bn,n) < 0 implies R((M — B)~1C,C) > 0, since
R((A —-B)'C,C) = R(u, (M — B)u)
Mull* = R(u, Bu) >0,

with u = (\] — B)~!'C. Hence Ra(y,y) 2 ||ly||#-, which implies that a is coercive.
Applying Lax-Milgram Lemma, there exists a unique y € V' solution of equation (1.5).

In particular, setting ¢ € D(0,1) in (1.5), we get
Ny = Yoz = f1, in D'(0,1). (1.6)

Due to the fact that y € V we get y, € L*(0,1), and we deduce that y € H?(0,1). Multiplying
both sides of the conjugate of equality (1.6) by a ¢ € V, integrating by parts on (0,1), and

comparing with (1.5) we get
v(1) = (A= B (€3 (1) = Cxy(1) =), C)

Defining n = (A — B)~Y(m — Cy1(1) + CAy(1)), we get y.(1) = —(n,C) and by choosing
z = Ay — y1 we deduce the surjectivity of A\I — A. Finally, we conclude that AT — A is bijective,

foral A >0. m
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Remark 1.2.2 If 0 is not an eigenvalue of B, then A is bijective (see Proposition 1.3.2 below)
and A~ is bounded.

Remark 1.2.3 If R(Bn,n) <0, then R ((iz — B)~'C,C) >0 . Indeed,

R((izI — B)™'C,C) = R(u, (iz] — B)u) = R(u, izu) — R(u, Bu)
= R(—iz|ul|*) = R(u, Bu) = —R(u, Bu) > 0.

Since A is m-dissipative, then Lumer-Phillips theorem allows us to state the following corollary.

Corollary 1.2.4 (i) For an initial datum ug € H there exists a unique solution u €
C([0,4+00),H) to problem (1.3). Moreover, if ug € D(A), then

u € C([0,4+00), D(A)) N C([0, +o0), H).
(ii) For each ug € D(A), the energy E(t) of the solution w of problem (1.3), defined by

B(t) = 5 u(t)

satisfies
d

%E(t) = %(377» 77)7

therefore the energy is non-increasing.

Proof. (i) is a direct consequence of Lumer-Phillips theorem.
(ii) holds simply since
dE(t)
dt

du(t)
dt

=R( Ju(t)) = R(Au, u).

1.3 Asymptotic stability

Since A is m-dissipative and D(.A) is compactly embedded in H, then for all A > 0 the operator
(M — A)~! is compact. Thus A has a compact resolvent, which implies that the spectrum of
o(A) is equal to its discrete spectrum o4(.A). To show that (7'(t)):~0 generated by A is stable
we are going to use the following theorem due to Arendt and Batty (see [10]).

Theorem 1.3.1 (Arendt-Batty) Let X be a reflexive Banach space. Assume that T is bounded
and no eigenvalues of A lies on the imaginary axis. If o(A) NiR is countable, then T is stable.

Indeed, in our case A has a compact resolvent, which implies that o(A) is purely formed of
eigenvalues and the conditions of Theorem 1.3.1 reduce to o4(A) NiR = ¢.

In order to prove the asymptotic stability of the energy of system (1.1) under some appropriate
assumptions, we characterize in the subsequent section the eigenvalues of A.
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1.3.1 Characteristic equation

Proposition 1.3.2 A is invertible if and only if B is invertible.

Y
Proof. Let | z | € D(A) be a solution of
n
Y 0
Alz]=1{0
0
That is,
z 0
Yzx =10},
Bry+ Cz(1) 0

which is equivalent to
Yz = 0,z = an(o) =0, BT/ = an$(1) + (777 C) =0.
We write equivalently
y=cx,z=0,Bn=0,c+(n,C) =0,

for some ¢ € C.

Suppose 0 ¢ o(B). Then n = 0, which implies ¢ = 0, hence 0 &€ o(A).

Suppose 0 € o(B). Choose 1 an eigenvector of B, then (—(n, C)x,O,n)T is an eigenvector of A
associated with 0. Thus 0 € o(A). =

Proposition 1.3.3 A complex number X\ is an eigenvalue of A if and only if it satisfies the
characteristic equation given by:

M —B —Csinh A
Ca(A) = det ( Cc*M cosh A ) =0

Proof. Let A be a non zero eigenvalue of A. Let € D(A) be the associated eigenvector.

Y
z
n

Y

z|l €D

n

Then, we have

equivalently,
Yy z
z | € D(A), Yoz
n Bn+ C=z(1
Thus z = Ay, Ype = A2, B+ Cz(1) = An,y(0) = 0,2(0) = 0, y, (1) + (

We get

Yow = N2y, 9(0) = 0,2 = Ay, (A — B)n — CAy(1) = 0,C*Mn + y,(1) = 0. (1.7)
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Then there exists o € C such that

y(x) = asinh(Az), z(z) = aXsinh(Az), (A — B)n — CAsinh(A)a = 0, C*Mn + A cosh(N)a = 0.
(1.8)
Hence to find A € o(A) is equivalent to find a nonzero couple (7, ) solution of

M —B —CAsinhA\ (n) _ (0
C*M Acosh A a)  \O)°
M- B —C’sinh/\> —0

Consequently, A € o(.A) if and only if C4(\) = det < M cosh \

cC*M 1
eigenvalue of B, i.e. an eigenvalue of A by Proposition 1.3.2 . m

Remark that C4(0) = det ( b 0) = det(—B). Thus 0 is a root of C4 if and only if 0 is an

Proposition 1.3.4 Let A & o(B) be nonzero. Then A € o(A) if and only if A satisfies
coshA + (A — B)~'C, C) en sinh X =0, (1.9)

or equivalently
det(AI — B)cosh A + (adj(A] — B)C, C)cn sinh A = 0, (1.10)

where adj(A] — B) denotes the adjugate matriz of \I — B.

Proof. Let (y,2z,m)" € D(A) be the associated eigenvector. Using equation (1.7) there exists
a € C such that y, z and n satisfy (1.8).

Since (A — B) is invertible, then supposing o = 0 implies that (y, z,17) = (0,0,0). We deduce
that a # 0 and as A ¢ o(B) we can write

n = (M — B)"'CaAsinh ),

thus A satisfies
Acosh A + (M — B)™'C,C)cnAsinh A = 0.

Hence every nonzero \ ¢ o(B) satisfies the characteristic equation given by (1.9). Noting that

(M - B)™l = madj(/\f — B), we may write our characteristic equation satisfied by any

nonzero A € o(A)\o(B) as in equation (1.10). =

Up to now we obtained the characteristic equation satisfied by all A € o(A), and gave a precise
characterization of A\ € o(A) in case it is not an eigenvalue of B. The next section is dedicated
to the discussion of the conditions that allows to obtain asymptotic stability of the Cy-semigroup
generated by A.

1.3.2 Conditions of stability

Proposition 1.3.5 Let z € R*. Then iz ¢ o(B) is an eigenvalue of A if and only if

R((izI — B)™'C,C)cn = 0 and cos z — S((iz] — B)'C,C)¢cn sinz = 0. (1.11)
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Proof. Indeed, by (1.9), we have
iz € 0(A)\ 0(B) & cosz +isinz (R ((iz] — B)"'C,C) ., +iS ((iz] = B)™'C,C),) =0,
which is equivalent to

R((izI — B)™1C,C)cn sin 2 = 0, (1.12)
cosz — § ((izI — B)~'C, C)(C" sinz = 0. ’
If sin z = 0, then cos z # 0 and system (1.12) has no solution. We deduce that z is a solution of
(1.12) if and only if (1.11) holds. m

Proposition 1.3.6 For any integer k, ikm is an eigenvalue of A if and only if ikm is an eigen-
value of B.

Proof. Being an eigenvalue of A, ikw satisfies C4(ikm) = 0, i.e.

+ det(iknl — B) = det (zlml B 0 )

C*M  (—=1)F
that is ikm € o(B). m

Proposition 1.3.7 Let A € o(B) such that X\ # ikmw for every k € Z. Suppose that all nonzero
n € ker(A — B) are not orthogonal to C. Then C ¢ ker(A — B*)* implies that \ & o(A).

Proof. Indeed, A € o(.A) implies the existence of (a,n) # (0,0) satisfying
(M — B)n = CAsinh Aa and aAcosh A + (n,C) = 0.

If =0 then 0 # 7 € ker(A] — B) and (n,C) = 0. Hence C is orthogonal to 7.
If a # 0 then C € Im(\ — B) = ker(\] — B*)*. =

Proposition 1.3.8 The following assumptions are sufficient to obtain stability of the Cpy-
semigroup associated with A

(A1) R((izI — B)~'C,C) > 0,Viz € 0(B),z € R*.

(As) ikm & o(B),Vk € Z.

(A3) Viz € 0(B),C ¢ ker(izI + B*)* and (n,C) # 0 for all nonzero n € ker(izI — B).

Proof. The proof follows directly from Proposition 1.3.5, Proposition 1.3.6, Proposition 1.3.7
and the theorem of Arendt-Batty. m

Definition 1.3.9 A matriz B is said to be Hurwitz if all its eigenvalues have negative real parts.

Corollary 1.3.10 Assume B is Hurwitz and Condition (A1) holds, then the Cy-semigroup gen-
erated by A is strongly stable.

Decompose B into a sum of a skew-adjoint matrix By = B}B* and a self-adjoint matrix

R=2 JFQB ", where B* is the adjoint matrix of B with respect to the inner product (-, )cn.
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1.4 Polynomial stability

Let us first define the conservative system associated with system (1.1) by

Yie(2,1) — Yoo (7, 1) = 0, 0<zx<l1,t>0,

y(oat) = O, t > 0,

(L) + (), Chen = 0, t>0, (1.13)
n(t) — Bon(t) — Cye(1,t) = 0, t>0,

with the initial conditions given by (1.2). Let A be defined by D(A) = D(A) and

Yy z Yy
Alz| = Yaz V| z| €D(A.
n Bon + Cz(1) 7

1.4.1 Non uniform stability of A

We present in the subsequent lemma the tool to be used in proving the non uniformity of the
Co-semigroup generated by A (See for instance [44]).

Lemma 1.4.1 Let A = —A* be the infinitesimal generator of a Cy group, and let B be a compact
operator in the Hilbert space H. Then the group (T(t))i>0, generated by the operator —(A + B),
has no uniform energy decay rate for t > 0.

By replacing B by By in the proof of Proposition 1.2.1 we deduce that for A > 0, A\l — A is
surjective. Also, using the same method as in the proof of Proposition 1.2.1 we can easily show
that Al + A is surjective. Accordingly, the subsequent remark follows.

Remark 1.4.2 Since By is skew-adjoint, it follows that A is skew-symmetric. Now, as A\ — A
and pl + A are onto for some X > 0, u > 0, A is skew-adjoint. According to Stone’s theorem
(see Theorem 10.8 in Chapter 1 of [42]), A generates a unitary group.

Proposition 1.4.3 The Cy-semigroup associated with A is not uniformly stable.

Y 0
Proof. We have (A — A) [z | = | 0 |, which is compact since it is a finite rank operator.
U R

The required result follows from Lemma 1.4.1. m

Next, we discuss the asymptotic behavior of the eigenvalues and eigenvectors of A. Later,
we establish some inequalities corresponding to the solutions of system (1.1) and those of the
conservative one (1.13) to deduce finally the polynomial stability.

1.4.2 Asymptotic behavior of the spectrum of A

Denote by P : C* — W the projection map from C™ onto W, with W = (ker R)*. We recall
that P is linear continuous map satisfying P2 = P and that any n € C* = ker R @ W can be
written in a unique way as 7 = Pn + 1), where Pn € W and 7 € ker R.
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Remark 1.4.4 Clearly, (—Rn,n)% is @ norm on W. As W is a finite dimensional space, it
follows from the property of the equivalence of norms on finite dimensional spaces that there
exists a > 0 such that (—Rn,n) > || Pnl|3, for alln € C", where || - ||2 is the Buclidean norm.

As R(Au,u) =0, for all u € D(A), then all the eigenvalues of A are purely imaginary. Denote by
A = ip the eigenvalues of A, by ¢, = (yu, 24, Nu) the associated eigenvectors. Due to Proposition
1.3.4, an associated eigenvector with A = iy, where |u| > || Bo]l, is given by

1
= isin(pz), —psin(px), —(ipd — By) ~1Cusin p),
¢ N(u)( (px), —psin(pz), —(ip 0)" Cusinp)

with N(p) the factor of normalization given by

N(p) = p2+|(ipd — Bo) *C|[2np? sin?(u)
. By, _
= M2+Sm2(u)ll(l—a) 'C|[n-

Assume that there exists p € NU {0} such that P(BjC) # 0. Let
m = min{p € NU{0} : P(B5C) # 0}. (1.14)

Proposition 1.4.5 As k — oo, the asymptotic expansions of uy (with S(uy) € (km, (k+ 1)7)),
N(px) and Pny, are given by

P 7 < N .= A A
2 km 2k27 ik2m? k2 )’

N(pg) = E*n + o(k?),
1 [ P(BrC) 1
k 0
Py, = (1) jm—1 (km+17rm+1 +o <km+1>> :

Moreover, the expansions of p_j (with S(pu—y) € (—(k + 1)m, —km)) and Pn,_, are

P S HC||2+ ”CH2+(B0070)+0 1
-k 2 kr | 2k2r k272 k2 )’

1 [ PBro) 1
_ k—m+1 0
Pn“*k - (_1) jm—1 (k.m—l—lﬂ-m—l-l to <km+1>) )

Proof. For p € C with |u| large enough, namely |u| > || Bpl| and using Proposition 1.3.4 we have
that iy is an eigenvalue of A if and only if u satisfies

cos L + ((iul — By)'C, C)Cnisin,u =0,

which implies
cosp = —i ((ipl — By)~'c, C)(Cn sin .

For pn = k7 the above expression is not satisfied, so pu # km, dividing by sin u, we obtain:

cot = g(p),
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() = ; ((Iif) c,c)cn.

1 >/ Ba\"
Since |u| > || Bo|, I — 32 is invertible and (I — %) = Z (zi) .

with

By the continuity of the mapping u — (u,C)(u € C"), we get

o) = (; (%)nc, C>(C” = i (Zanilc c)cn.

K n=0 p

We proceed by studying the variation of g. Indeed, the derivative of g is given by

n+1(BjC,C
) = Y o 0O
n=0

Now, let us discuss the number of roots of g between kr and (k + 1)7. For |u| large enough, we

e _HC||2 HCH2
1 1
= +o(—], and ¢ = +o0 ( )
Q(M) ( > Y (M) ,U2 112

which implies that g is negative and increasing for such values of u, thus we deduce that for k
large enough there exists a unique p, between km and (k + 1)7 solution of g(u) = cot(u) -
Hence the form of an eigenvalue between ikm and i(k + 1)7, is iy with pg = km + § + €. Since
cot(pr) = g(pk), then Z + e = cot™(g(ux)), but g(p) — 0 as g — oo, so & = o(1). To find the
asymptotic expansion of e, we consider the inverse cotangent of g(x). Indeed, we have:

. B E 0 ))2k+1
v
= 5 —9(m) + o ((9(m))*) -
But,
ClZ (ByC,C 1
sy = -LCE _(BG01 (1)
ik ip, 1
I
un kr 2k2r O\ &2)
o1 (L
M% - k272 2 )
e IC12 | IClE (BeC.C)
_ - oY, i
9lme) = =2 gy T ez 7O <k2>

We finally get the asymptotic expansion of py € (km, (k+ 1)7),

C|? C|?  (ByC,C 1
womtn s T IO (Bi00) (1),

2 kr  2k27 ik2m?

10
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As sin(pg) = sin(km + 5 + (1)) = (=1)% + o(1) and [|[C + -
n=1

Bon 9 .
——C||* is bounded, we get
k

N () = k2% + o(k?).

The expansion of 7, is given by

sin By \ !
e i (12
N (k) L

1 1 B
= (=D)ki [ — - E 0=
(=1)% (kﬂ'+0<k)> Oz'",uz

n—=

Taking the projection P of 1, on W, we get

1 [ P(ByO) |
_ k 0
Pnl‘k - (_1) gm—1 (km+17rm+1 +o (km—l—l)) )

We proceed by the same way to prove the existence of a unique p_j € [—(k + 1)7, —kn] and
obtain its asymptotic expansion. m

1.4.3 An a priori estimate

Let uq be the solution of the conservative problem, i.e. u; satisfies

dy, = Au
[0 = o e

Let u be a solution of the original system associated with the coupled PDE-ODE system

d
gu(t) = Au(t), t>0,
{ w(0) = g, (1.16)
where D(A) = D(A) was introduced before.
Setting us = u — uy, uy fulfills the following non homogeneous initial value problem
UQ(O) = O, '

where f = (0,0, Rn) with 7 the last component of u.

Definition 1.4.6 The function uy € C([0,T];H) given by: ua(t) = fg eAt=9) f(s)ds is the mild
solution of the initial value problem (1.17) on [0,T].

Back to our problem, we have %E(t) = R(Bn,n) = (Rn,n) < 0, then integrating between 0
and any 7" > 0, we get

T
B = E0) = [ (. apat

We claim that there exists ¢ > 0 depending on T" such that chT(—Rn, n)dt > fOT(—Rm, n1)dt. To
get the polynomial stability, we will impose assumptions to bound f(;[ (—Rny,m)dt from below.

11
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Proposition 1.4.7 For all T > 0, there exists ¢ > 0 depending on T' such that

T T
/ (=R (), m()dt < c / (—Rn(t), n(t))dt. (1.18)
0 0

Proof. Throughout the proof, we use the notation A < B to denote the inequality A < ¢B for
some positive constant ¢ depending on 7. Recall that B can be written as By + R where By is
skew-adjoint and R is self-adjoint with

(Rn,n) =R(Bn,n) <0.
Note also that R(Rn, k) = R(Rk,n) from which we deduce that,
R(Rn. k) < (~Rn.n)?(~ Rk, 5)2.
Hence (—Rn, 7])% defines a semi norm on C". As n; = n — 19, we get:
(=Rn,m) < 2((=Rn,n) + (=R, n2)) - (1.19)
Next, we show that f(;f (—Rma(t),ma2(t)) dt < fOT(fRn(t), n(t))dt. Indeed, we have:

0

t
uz(t):/ eAlt=s) 0 ds.
0 Ri(s)

As A is skew-adjoint, it follows from Remark 1.4.2 that A generates a group. Moreover, we have

¢ 0 yo(t)
(ua(t), ug(t))y = / A L0 || 20 ds
0 Rn(s) n2(t)) ) 4
t 0 Yya(t)
= / 0 e A 20 () ds
O \ \&n(s) n2(t)

H

= [ (Roto) (e ) s,

where p3(u) denotes the projection of u € H on C". It follows that

N|=

/0 (R(s), p3(e” M uy(h))ds < /0 (=Rn(s),n(s))2 (— Bpa(e™ 2 us (1)), ps(e A= us(t))) 2ds

e n6)ds)” ([ Toate A uaeplas)’
( ) (/. )

N

We then get for t < T,

[NIES

IIU2(t)H%§</O (—RU(S)W(S))CLS) [[ua ()]

12
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Consequently,

1
2

T
MﬂﬂwSWMmm5<A(4%@m@M0,

which leads to

T T T
| rmmas [ molRas [ o)
Hence by (1.19), we conclude that (1.18) holds. m

In the next section we find a lower bound of f(;[ (—Rmni(t),m(t)) dt, that allows to deduce a
lower bound of fOT (=Rn(t),n(t))dt.

1.4.4 An Observability Inequality

First, we present the following lemma which guarantees that Pr, # 0, for all u with small
modulus. The purpose of this lemma is to deal with the terms of low indices in the proposition
that follows. As a second consequence, it also implies that under its assumptions 4 has no
eigenvalues on the imaginary axis.

Lemma 1.4.8 Suppose that o(A) No(By) C {ikw : k € Z} and Py # 0, where vy, represents
the eigenvector of By associated with ikm € o(By). Suppose moreover that

P ((inl — By)~'C) # 0,Vip € o(A)\o(By),
then Pn, # 0, for all ip € o(A).

Proof. Let ip € o(A). If ip € o(By), then by Proposition 1.3.2 and Proposition 1.3.6, we get
i # ikw for all k € Z. Since 7, is given by 1, = —(iul — By) 'Caypusin u for some nonzero «
and P ((ipl — By)~'C) # 0, then P(n,) # 0.

If ip € o(Byp), then u = kor for some kg € Z. But by Proposition 1.3.2 and by (1.8) of
Proposition 1.3.3, 7, the last component of the eigenvector ¢, of A associated with iy is
different from 0 and satisfies Bon,, = iun,. Hence Pn, #0. =

Remark 1.4.9 If C ¢ ker(iul — By)* and (n,C) # 0 for all nonzero n € ker(iul — By), for all
ip € o(By) with p # kn for every k € Z, then by Proposition 1.3.7 we get o(A)No(By) C {ikn :
k € Z}. Remark also that if the eigenvalues of By are geometrically simple then the conditions
needed to imply o(A)No(By) C {ikm : k € Z} reduce to C & ker(ipl — Bo)* for all iy € o(By) .

Corollary 1.4.10 Under the assumptions of Lemma 1.4.8, we have
a(A) NiR = (.

Proof. By Proposition 1.3.3 (see (1.8)), iu # 0 € o(A) NiR if and only if there exists a non
zero (n,a) € C" x C solution of

(ipl — Bg — R)n+ Cusin pa = 0, (n,C) + ipcos po = 0. (1.20)

13
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Taking the inner product of the first identity with 7, we find
((ipd — Bo — R)n,n) + psin pe(C,n) = 0.
Taking into account the second identity of (1.20), we get
((inI — By — R)n, ) + ip® sin p cos plaf® = 0.
The real part of this identity is nothing but

—(Rn,n) = 0.

Moreover, if 0 € o(A) NiR then by Proposition 1.3.2 we deduce that Bn = 0 from which we also
deduce that —(Rn,n) = 0, or equivalently n € ker R (or Pn = 0). Coming back to (1.20), we see
that (n,a) € C" x C is also solution of

(ipd — Bo)n + Cusin pa = 0, (n, C) + ipcos pa = 0,

for u # 0 and Bon = 0 for p = 0. In other words, iy € 0(A) and by Lemma 1.4.8, Pn cannot be
zero. W
We recall in the subsequent theorem an inequality of Ingham’s type (see for instance [11]).

Theorem 1.4.11 Let (Ay)nez be a strictly increasing sequence of real numbers and let U be a
separable Hilbert space. Suppose the sequence (M) satisfies the "gap" condition

Iy > 0,Yn € Z, Ani1 — A\ > 7,

then for all sequence (an)nez C U, the function

f(t) — Zanei)\nt

neL

satisfies the estimate
T
[ 151 ~ X
0 nez
for T > 2my.

Now we suppose that
all A € 0(A)No(By) C {inm : n € Z} are simple eigenvalues of By. (1.21)

We already know that the algebraic and the geometric multiplicities of the eigenvalues of A
are equal, since A is skew-adjoint. Moreover, we previously showed that the eigenvalues of A
which do not belong to o(Bjy) are simple. Hence we notice that the algebraic multiplicity of any
eigenvalue of A and its geometric multiplicity is equal to 1. As A is a skew-adjoint operator with
compact resolvent, the spectrum of A may be represented by a sequence (Ao )ner = (iftn)ner
with (fin)ner a strictly increasing sequence, where I = Z* if A is invertible and I = Z with

po = 0 if A is not invertible. Denote by (¢on)ner = ((ygn), Zin)’nﬁn))‘r) , the corresponding
ne

sequence of eigenvectors associated with (Ao )ner-

14



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Proposition 1.4.12 Assume (1.14) and (1.21) and let uy = (y1,21,m1)" be the solution of the
conservative problem (1.15) with initial datum ug € D(A). If the assumptions of Lemma 1.4.8
hold, then there exists T > 0 and ¢ > 0 depending on T such that

T
| 1Pm ol > cluol e (1.22)
Proof. As (¢on)ner forms a Hilbert basis of H, we may write uy = Zuén)gbom. Moreover,
nel
_ (n) ipnt _ (n) ipnt (n) P (n) z,untP )
- Zuo € QSO,TL’ Ul(t) - ZUO € oy 771 Zu T
nel nel nel

s

Note that pny1 — pn > § for |n| large enough, say for |n| > no. Set vy =
min {5, min{gni1 — pn 0] <no}}. As pri1 — pe > 70 > 0, then using Ingham’s inequality
there exists T' > 27wy9 > 0 and a constant ¢ > 0 depending on 7" such that

/ P @)2dt > ¢S [[ud” Pri 2.
nel

For ny € N large enough, there exists an integer k,, such that for all |n| > ng we have
tn € [knm, k17| with kpy1 =k, + 1 and

() _ L ([ P(BC) 1
Py = (=1 gm—1 (k#+lﬂm+1+0 kgz—&-l ’

: n)y2 1
then usimg the fact that ||P7]1 H W,
Ingham’s inequality the existence of T' > 0 such that

/ T T QI

[n|<ng |n|>n0

and due to Lemma 1.4.8, we obtain by

(1.23)

with the notation 0~2(™*1) = 1. For a non invertible A, define the norm on D(A~("+1) by

—2 1
HUOHD A—(m+1)) ‘uo + Z ’)\Om’ (m+ )|uén)’27
nez*

then estimate (1.23) implies (1.22). =

1.4.5 Interpolation inequality

Lemma 1.4.13 For all ug € D(A) and all s € N, we have Huo||SJrl < HUOHD(A*S)HUOHSD(A)

2s

Proof. We proceed by proving: [ug||3, < ||u0H S“ Hu0||SDJEf4
In fact, we have [Jug||3, = Z |u0 )\ where vy = Zué )qb(]n with I = Z or I = Z*.
nel nel

15



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Using Cauchy-Schwarz inequality, we get for any v > 0,8 > 0 such that v+ g = 2, and any
conjugate exponents p > 0,¢ > 0 and any o > 0

STEUP = 3 S P ol Aonl ™ = 3 [l P o sl ud [ Aol

nel nel nel
1 1
P q
< <Z<|ué">\ﬁmo,nra>f’) (Z<|ué”’|m,nr-a>4> :

nel nel

with 0% = 07% =1 as notation, and HUUHQD(AT) = Z ’u(()n)|2‘)\07n‘2r for all r € R.
nel
The result follows from the following choice g =s+1,p =%, a == % =5 7=3 =

The next Lemma proved in Lemma 5.2 of [8] is required for the proof of stability.

Lemma 1.4.14 Let (e;)r be a sequence of positive real numbers satisfying

Eky1 < € — Cé‘ii'f,Vk >0,

where C' > 0 and a > —1. Then there exists a positive constant M (depending on o and C') such
that
M
e <

(14 K)o+t

1.4.6 The polynomial stability

We are now able to state our polynomial stability result.

Theorem 1.4.15 Let u be a solution of the problem (1.8) with initial datum uy € D(A). Let
the assumptions of Lemma 1.4.8 be satisfied. Assume moreover (1.21) and the existence of m as
defined by equation (1.14), then we obtain the following polynomial energy decay:

M
B(t) € — 2 Juol3a,
(14 t)ym+T
for some M > 0.

Proof. Let p = m+1. With T" > 0 from Proposition 1.4.12 we have E(T") < E(O)—K||u0||%(A,p),
where K is a positive constant depending on T'. Indeed, by Proposition 1.4.12 we have

T 1 (T —a [T
B(r) = B0) = [ (Rt < ¢ [ (Rovomar < =2 [T 1Pt < =Kol

Set E1(0) = 5 (|luoll3; + [ Auoll3,)-

2 luolly” ™ EP*L0) g . _
By Lemma 1.4.13, we have ||UOHD(A7P) 2wl 2 ) Since the energy is decreasing
with time, we obtain
EPTLH0) EPTHT)
ET)<EQO)-K——~><F0) - K—p—.
D= PO =Ky = PO~ K )

16



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

We prove similarly that

EPTY((k+1)T)

E((k+1)T) < E(kT) - K BT

Dividing by F7(0) and noting that E;(0) > E1(kT), we obtain

p+1
e S e — Keg oy,

. E(kT
with g, = E(l(O))'
Applying Lemma 1.4.14, there exists M > 0 depending on T such that e, < ——— where
(1+k)TFa

24+ a = p+ 1, which implies that

since £1(0) < HUOH2D(A)‘ u

1.5 Optimality of the energy decay rate

Let
f(A) =det(A — B) cosh A + (adj(AI — B)C,C)sinh A,

g(A\) = det(A — By) cosh A + (adj(A] — By)C, C) sinh A.

In order to find a correspondence between the eigenvectors of A and A, we discuss in the subse-
quent proposition the number of roots of ¢ and f in appropriate regions of the complex plane.

Proposition 1.5.1 The number of eigenvalues of A counted with multiplicities is equal to that
of A in the square C,, = [—nm,nw| X [—nx,nz], for n large enough.

Proof. Using Rouché’s Theorem we prove that f and g have the same number of roots in C,,
for n large enough.
Let h()\) = cosh A + (A — B)71C, C) sinh A and hg()\) = cosh A + ((A] — By)~1C, C) sinh \.
Computing h(A) — ho(A) for |A] large enough, we get:

h(A) — ho(\) = ((AI B, C) sinh A — (()\I ~ By e, c) sinh \
_ Sin;” ((1—1;>_10 <1—]i°> c,c)(cn
sinh A (Z BOC C)
(RC,C) -

A
1
= 2 sinh A + o ()\2> sinh A.

Cn

17



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Consider the ratio of |h(A) — ho(N)| by |[ho(N)]

BN —hoN) [ESD sinh A + o(55) sinh A
|ho(N)] ~ |cosh A+ (M — B)~1C, C) sinh |
K
= =< (B"C,C),
N2ERR A |
n=0

Note that for )\ =z + iy, we have | sinh A|2 = sin? y + sinh? z, and | cosh A|? = cos? y + sinh? z
thus < L2 < + 2 which implies that for || = [R(\)| — oo, |L02] — 1.
We deduce that

h2 ’
[h(A) = ho(V)]
[ho (V)]

Suppose that [S(A)] = |y| = nm, then [ASA12 — (272 4 42) (1 +

— 0, as |R(A)| — oc.

) > n272. Tt follows

smh2

that for such A, M—>Oasn—>oo

[ho(N)]
For n chosen large enough, we then have W — 0, for all A € 9C,,.
Consider the ratio %, we may write for |A\| > max{||B|, || Boll}
fN) =g [det(AT = B)h(A) — det(A — Bo)ho(M)]
eyl | det(A — Bo)ho(N)]|
|det(AI — B)| |[h(A) — ho(N)| | det(A] — B) — det(AI — Bp)|
|det(A — Bo)|  |ho(N)] | det(Al — By)

Knowing that det(A\ — B) is a monic polynomial of degree n we get

M — 1, as |A] = o0
and | det(AT — B) — det(\ — Bg)| _ 1
[det(\ — Bo)| SW—)O as || — oo.
We deduce that for A € 9C,, with |A| = oo, we have LGS — 0. Thus for A € OC,,
and n large enough, W < 1.

Clearly, f and g are analytic, this together with the above comparison allows to apply Rouché’s
theorem in C), for n large enough, from which we deduce that f and g have the same number of
roots in C),. B

Definition 1.5.2 A system {gn}nen of elements of H is said to be w—linearly independent if

[o.¢]
Zangn = 0 tmplies a, = 0,Vn € N.

n=1

In order to show that the generalized eigenfunctions of A are w—linearly independent, we use
the following Lemma mentioned in [21].

18



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Lemma 1.5.3 Let B be a densely defined closed linear operator in a Hilbert space H. Assume
that the spectrum of B consists entirely of, at most countable, isolated points, each of which has
a finite algebraic multiplicity. Then the generalized eigenfunctions are w—linearly independent.

To use Lemma 1.5.3, we show that the algebraic multiplicities of all eigenvalues of A are finite.
In fact, the multiple eigenvalues of A must satisfy a polynomial equation, thus they are finite
and of finite algebraic multiplicity.

Proposition 1.5.4 All the eigenvalues of A have finite algebraic multiplicities. Moreover, the
ergenvalues with large enough moduli are algebraically simple.

Proof. Define F' by:

F(z) = 2°f(2)
= ¥Pi(2) + Pa(2)

where P;(z) = det(z — B) + (adj(z{ — B)C

Every non simple eigenvalue z satisfies F'(z)

C), and P(z) = det(z — B) — (adj(z — B)C,C).
= F'(z) = 0, and thus satisfies P(z) = 0, where

F'(2)Py(2) — F(2)Py(2)

P(z) = — (2P\(2) + P{(2)) Pa() — PL(2)P3(2).

Hence a non simple eigenvalue z of A is one of at most 2n roots of P(z) having a multiplicity
< 2n, where n is the dimension of C". m

Remark 1.5.5 Assume that
o(A)No(By) C {ikm: k € Z} and o(A)No(B) = ¢, (1.24)

then f and g describe the full spectrum of A and A respectively allowing to get a one-to-one
correspondence between the spectra of A and A. In practice, we will check conditions of Remark
1.4.9, C & ker(M\ — B*)* and (n,C) # 0 for all nonzero n € ker(\ — B) for every A € o(B) to
show that g represents the characteristic equation satisfied by all eigenvalues of A. Note that the
last condition is equivalent to C & ker(\ — B)* for a geometrically simple eigenvalue \ of B.

In what follows we discuss the asymptotic behavior of the eigenvalues of A and the associated
eigenvectors that allows studying some cases in which optimality of the polynomial decay can be
obtained.

Proposition 1.5.6 Let A be an eigenvalue of A with || large enough. Then X satisfies the
following expansion for some k large enough,

_ T ICIP _lICI? | (BoC.C)\ |, (RC.C) 1
A_Z<]'”T+2+ b okr ke )T wEe TO\RE) (1.25)

Proof. Let A with |\| > ||B]| be a root of h, since F'(\) = 0, then

n_ 2((M—B)™'C,0)
T\ T1r(a-B-c0) )
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1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

Setting
(- BC0)
1+ ((\[—B)~lC,C)’
we have
A EZ(B C,C) _ 1
)\nzo A" 1 (BnC7C)
+Z{) )\n—i-l
IC|I> . (BC,C)—||C|* 1
= 2 2 —
N A2 tolx )
and

2 _ e 1
X =4 )\2 + o0 F .

= " C|2 BC,C 1
ln(l—x)——zn——QH)\” —2( 2 )—|-0</\2>.

It follows that

n=1
As || is large, the imaginary part of A lies between k7 and (k + 1)m for some k large enough,
and

) T 1
A =i(km + 5) + 5111(1 — ).

As +=—72L+ ﬁ +o (k%) and % = —kQ—ler +o (k%) , we obtain (1.25) as required. m

To show that the system of generalized eigenfunctions of A forms a Riesz basis of H, we use
the following well known Bari’s theorem.

Theorem 1.5.7 Let I be a countable set. Consider the two systems (Vy)rer and (¢)ker of
vectors of H such that (¢r)rker is a Riesz basis of H. If (Yr)ker is a sequence of w—linearly

independent vectors quadratically close to (¢x)ker (i-e. Z b — drl|* < +00), then (Yi)rer is a
kel
Riesz basis of H.

Denote by (Ag)rer the set of eigenvalues of A counted with multiplicities such that
S(Ak) < S(Akt1),VE € 1.
We use the notation (Ao x)rer introduced before to denote the sequence of eigenvalues of A.

Proposition 1.5.8 If (1.24) holds, then the system of generalized eigenvectors of A forms a
Riesz basis of H.

Proof. For k € N large enough, an eigenvector ¢, (respectively ¢g ) of A associated with the
eigenvalue Ay (respectively A1) whose imaginary &(\g) (respectively (Ao x)) lies between ngm
and (ng + 1) for some integer nj and whose norm ||¢g|| ~ 1, is given by

1
¢k = )\7 (Slnh()\k;lﬂ), )\k Sil’lh()\kl’), >\k‘ sinh Ak‘()\k?l - B)_IC) :
k
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1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

with
1 1) 1 1

—=——to(— :
A g (nk in/N(in,) Aok

Now, we examine for k large enough the following difference,

o —

= / | ———=—=—— cosh(\ o7) — cosh(\z)|*dz
unk V(N (ny))

+ / | ———=——sinh(\; o7) — sinh(\y)[*dz
N V(N (pin,))

1 [e.e]
Z O Csinh(Ao) — )\—Z: Csmh (Ae)||Endz.

/||ﬁnok0

Indeed, we have

A 1
|- ~0 cosh(Ag0z) — cosh(Apz)| < —.
i/ (N (pny.)) Tk
Similarly, we obtain
)‘k 0 . . 2 1
| ——=—=sinh(\y 0x) — sinh(\y2)|* < —.
(N () nj

Using the fact that R(A\g) — 0, as k — oo, then for k large enough, we get

[e.e]

1 1 B" 1
Z By C'sinh(Ag o) — N N —C'sinh(\g)||En < ol

\/ :U’nk —0 kO n=0

We conclude that

R‘

> bk — dollz < +oo,

kel
which implies that the conditions of Bari’s theorem hold because of (1.24) (see Remark 1.5.5).
[

Definition 1.5.9 For all ug € D(A) define w(ug) by
1 9 1
w(ug) =sup{a € R: E(t) = §||u(t)|| < tfﬂ}

A decay rate is said to be optimal if it is equal to the minimum of w(ug) over all values of
ug € D(A). Our aim is thus to find inf( " w(up). We recall the following Lemma (see |34,53]),

upg€D

which will be used in the proof of optimality.

Lemma 1.5.10 Consider a Cy-semigroup T(t) acting on a (real or complex) Hilbert space H
with infinitesimal generator A. Assume the following
(i) For k € N*, the eigenvalue N\, of A is of the form \y = —oy + it with o >
c1 >0 and 6 > 0 are independent of k.
(ii) The eigenvectors ¢,k > 1 associated with the eigenvalue A\ form a Riesz basis of H.

75, where
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(1ii) Let ug € H be such that

U :Zaqb la ]<C—2c >0q>1

0 k>1 kPk, Ok = ka’ 2 ) 9

Then there exists a constant ¢ > 0 depending on ug such that ||T(t)upl|y < vt > 0.

_c
(a=%)/8°
Remark 1.5.11 Note that if oy, ~ k%; and |ay| ~ 7 then the equivalence

1
T(t ~—7=,Vt>0
7@l ~ g7

holds.

Proposition 1.5.12 Let the assumptions of Theorem 1.4.15 together with (1.24) of Remark
1.5.5 be satisfied. If R(A\g) ~ —k%, with § > 2(m + 1), then

1
inf  w(up) = ——.
up€D(A) m+1
Proof. Let € > 0 be given and let kg be large enough so that \; is algebraically simple for
1 .
all k > ko. Set uj = » 2O, With ¢ = s t3+ S As2(g—1) > 1, uj € D(A) and
E>ko

1
| Aus |2 ~ Z 2D < +00. Moreover, due to Proposition 1.5.8 the system (¢y)res forms a
k>ko
Riesz basis of H. Using Remark 1.5.11, we get

1 1
lu@®) ~ —— = ——=-
= 2/ t2(m+1) "2

t s

We deduce that E(t) ~ —2—— and therefore

¢ty e

1
< inf w(u) <—+4¢, Ve>N0.
m+1 7 weD(A) (0)_m+1

Hence inf w(ug) = —1=. m

uoED(A) ml
Corollary 1.5.13 If m = 0 we obtain optimal polynomial energy decay given by
c
B) < 5l Auol,
Proof. Using Theorem 1.4.15, the solution of system (1.1) satisfies the energy estimate given by
E(t) < ¢||Aug|)3,. Since PC # 0 and (—RC,C) Z | PC|? for some a > 0, then R(\y) ~ —k%
and the optimality is thus obtained by applying Proposition 1.5.12 with 6 = 2. m

We would like now to investigate the optimality of the energy decay in the case m = 1.
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Corollary 1.5.14 If m =1, (RC,C) =0 and I(B%C,C) = 0 then the polynomial energy decay
rate is optimal.

Proof. By straightforward computations, we get

w. o2 oo 19E+ (B0 |]C||4(BC’,C)+(B3C,C)+O<1)
- - - G - A4 .

)\:Z(kﬂ+§) \ )\2 Ad )\4

Then by further calculation, as (RC,C) = 0 we obtain

S(B2C,C)  33(B:C,C)  R(B3C,C) 1
R = k373 kA3 kAt + '

Moreover, since S(B?C, C) = S((RBy + BoR)C,C) = 0, we get

R(B3C,C) 1
BA= = T <k:4) :

and the optimality follows. m

Remark 1.5.15 In the case m =1, if B € Mp(R), M € M,(R) and C € R™ then the sufficient
conditions to obtain optimality reduce to the first condition (RC,C) = 0.

1.6 Examples

In this section, we present some examples and applications, in which we obtain polynomial
stability and check the optimality of the energy decay rate.

1.6.1 Example 1.

Let us consider the following system (Pp, p,) given by:

Y (2,1) — Yz (2, 1) = 0, 0<z<l1,t>0,
y(0,1) = 0, t>0,
Yz (1,t) + ne(t) = 0, t>0,
Nee(t) + bine(t) + bon(t) —ye(1,t) = 0, t>0,

where y represents the transversal displacement of the vibrating string and 7 denotes the dy-
namical control variable. Here by and by are positive constants.
This system is nothing but the system considered in [16,38] with a scalar variable instead of a
vectorial one in R3. In [38], the authors obtained polynomial stability using a multiplier method
but no optimality of the polynomial decay was proven. By our study, the optimal polynomial
decay is obtained.

In this case, we have
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The inner product considered on C? is given by

€T 1 _ _ b(] 0
i :b + ) M: )
() (2)) =t cvmorar =)
. (0 -1 (0 1 (0 0
w= ()2 (o) =)

H =V x L*(0,1) x C?,

endowed with the following inner product

and

The energy space is

1 1
((y, 2,1, K), (Y1, 21,M, k1)) = / Yz Y1 ,dx + / zzZ1dx + bonin + KK1.
0 0

Define
D(A) = {(y,z.n,5) € H*(0,1) NV x V x C? : (1) = —r},
and
Yy z
A z _ Yz
n K
K z(1) — bon — b1k

B is Hurwitz, since

det(A — B) = A2 + b1\ + bo
has no pure imaginary roots. Moreover, we have
R(Bn,n) <0 and |det(iz] — B)]*R ((iz] — B)"'C,C) = b12* > 0,Vz € R*.

Due to Proposition 1.2.1 and Corollary 1.3.10, we deduce the well-posedness of the system and
the asymptotic stability of its energy.
In addition, the conditions of Lemma 1.4.8 are satisfied. In fact, we have

det(A] — Bo) = )\2 —+ bD,O'(BO) = {:l:l\/%} and adJ()\I — BO)C - <i\> )

and the spaces ker R and W are given by span { <(1)) } and span { <(1)> } respectively, thus

P((A\I — By)~*C) # 0,Y\ € 0(A) \ 0(By).

To check the rest of the conditions of the lemma, we distinguish two cases:
Case 1. If pu? = by # k*n? for all k € Z, then

C & ker(ipl — By)*.

()0 -eo

implies that C' ¢ ker(iul — By)*, as we have n € ker(iul — Bp) if and only if n = (1,iu)"
up to a nonzero constant. So by Remark 1.4.9, 0(A) No(By) C {*iknr : k € Z}. In fact,
due to Proposition 1.3.6, o(A) No(By) C {*ikm : k € Z} No(By), thus o(A) Na(By) = ¢.

Indeed, computing
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Case 2. If by = k?r? for some k € N*, then o(By) = {dikn}. Computing the associated
eigenvectors we get

1 0
Nikr = (iilm) and P(N4pr) = (iilm) # 0.

As (1.21) holds, then applying Theorem 1.4.15 for m = 0 (since PC # 0), we deduce that the
energy of the system satisfies the following polynomial decay

1 2
E(t) < 5 +tHU0HD(A)-

It can be easily checked that C' ¢ ker(A\ — B*)* Uker(A — B)*, for all A € o(B), which
allows us to deduce that condition (1.24) of Remark 1.5.5 is satisfied, as we already checked that
C ¢ ker(ipl — Bg)*. Due to Corollary 1.5.13, we conclude the optimality of the energy decay.

1.6.2 Example 2.
Considering the following boundary conditions at z = 1 in system (1.1)
Yz (1,t) + bon(t) = 0, t>0,

nt(t) - K’(t) - yt(lvt) = Oa t> 0,
ke(t) + bon(t) + bik(t) = 0, t>0,

we get a system of the form (1.1) which is obtained by replacing C' = <(1)> in the first example

by C' = and keeping B, B*, By, and R as before.

1
0
Moreover, for all z € R we have

|det(izI — B)[*R ((izI — B)~'C,C) = b1 > 0,

thus using Corollary 1.3.10, we deduce the asymptotic stability of its energy.

In addition, to verify the conditions of Lemma 1.4.8, it is enough to remark that

P(adj(AT — Bo)C) = P (_Abo> _ (_%O> £0,

and as the discussion of the case by = k?7? of the first example remains unchanged, to check
that o(A) No(By) C {Likn : k € Z}, we just remark that

(—ipl + By)C = (:2‘:) £0, and ((;) , (é))c — by # 0.

Applying Theorem 1.4.15 for m = 1 (since PC = 0 and P(ByC) # 0), we deduce that the
energy of the system satisfies the following polynomial decay

1 2
E(t) < ﬁ”uOHD(A)'

Moreover, by the first example condition (1.24) holds, thus the decay is optimal by Remark
1.5.15, since RC = 0.

25



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

1.6.3 Example 3.

Consider the following system in which the dynamical boundary control involves a third order
differential equation of the dynamical variable 7,

Yit (T, 1) — Yo (2, 1) = 0, 0<zx<l1,t>0,
(0, 1) - 0, t>0,
Yo (L1, 1) 4+ 20(t) + 20e(1) + mee(t) = 0, t>0,
Neet () + 2n () + 3me () +n(t) — ye(1,6) = 0, t>0.

By introducing the following variables n1 = 29 + 2y + nu,m2 = —1 — 1, N3 = 0, the last two
equations can be rewritten in the form

y:}c(lvt) + (5(t)7 C) = 0, t>0,
{ 5i(t) — BS(t) — Cye(1) = 0, t>0,

where 0 = (91,72,m3)", and (-,-) denotes the usual inner product defined on C3, and the
matrices B and C' are given by:

0 1 0 1
0 -1 -1 0

We have R(BJ, ) = —|n2|? — [n3)?> < 0 and det(\] — B) = A3 +2)%2 4+ 3\ + 1, thus B has no pure
imaginary eigenvalues. We also have | det(izl — B)|?®((izI — B)~'C,C) = 22 +2 > 0, for all z €
R*. Using Proposition 1.2.1 and Corollary 1.3.10, the solution of the proposed system exists and
unique and its energy is asymptotically stable. We proceed by checking the conditions of Lemma
1.4.8. Computing the characteristic equation of By, we get

det(A — Bg) = AM(\? + 2) and o(By) = {0, +iv2}.
For A = 4i+/2, we have ker(\ — By) = span{(—%, 1,2) "}, it follows that (C, (—%, L) =-2

' 9 ' 9 29
which is nonzero thus C ¢ ker(A\ — Bg)*. Computing W and adj(A — By)C, we obtain
0\ /0 41
W = span 11,10 , adj(A — By)C = -2,
0 1 1

then P((A — By)~1C) # 0 for all A € o(A)\ o(By). The eigenvector of By associated with A = 0

and its projection on W are given by

1 0
n=1|(0], Pn=10]| #0.
1 1

Substituting m by 1 in Theorem 1.4.15 (since PC' = 0 and P(ByC) # 0), we deduce that the
energy of the solution of (1.26) fulfills the following polynomial estimate

1
1+t

Verifying condition (1.24) and noting that B and C have real components and (RC,C) = 0, we
conclude the optimality by Remark 1.5.15.

E(t) < [y

:



1 Polynomial decay rate for a wave equation with general acoustic boundary feedback laws

1.6.4 Example 4.

Consider the following system given by:

Yit(T,1) — Yza (7, 1) =0, 0<z<l,t>0,
y(0,t) = 0, t>0,
Yo (1,8) = n(t) — ne(t) — nu(t) = 0, t>0,
Neet(t) + et () + 2ne(t) +n(t) +ve(1,8) = 0, ¢>0.

Choosing
m=-—nN—"NM2="1—0— N, N3 =1,

we get a system in the form of system (1.1) with

0 1 1 0 1 1 00 0 0
B=[-10 0]|,Bo=(-100|,R=[00 0],c=[1
~1 0 -1 ~1 0 0 00 —1 0

Asdet(izl —B) = —iz3—22+2i2+1 # 0,Vz € R and R(Bn,n) < 0, where (-, -) denotes the usual
inner product defined on C3, we deduce that B is Hurwitz. By a straight forward calculation we
have

|det(izI — B)|*R((iz] — B)"'C,C)=1>0,Vz € R

we deduce by Proposition 1.2.1 the existence and uniqueness of the solution of the system and
the asymptotic stability of its energy follows from Corollary 1.3.10. We also have

A
adj(\l — By)C = [ A2 +1],
~1

knowing that the space W is spanned by (0,0,1)" we deduce P((A — By)~'C) # 0, for every
A € o(A) \ 0(Bp). Moreover, the characteristic equation of By is given by det(A — By) =
A(A2 +2), thus the eigenvalues of By are 0, 4iv/2. The eigenvector associated with zero is given
by (0,1,—1)", whose projection on W is nonzero and ker(\ — By) is spanned by (%, 1,17 for
A = 4iv/2, then C ¢ ker(A — By)*. We deduce that the conditions of Lemma 1.4.8 holds and
we therefore get the following estimate

)
(t) < (1+1)3

by simply replacing m by 2 in Theorem 1.4.15, as PC' = 0, P(BoC) = 0, and P(B3C) # 0.
Moreover, computing the asymptotic expansion of A € o(A) for a modulus large enough with
S(A) € (km, (k+ 1)m), we get

)\_'(k; +f)_l+i_i+i+ i
R T WS CR:S GRS VAR S

HUOH2D(A)'

then R(\) = —ﬁ +o (k—lﬁ), in addition C' ¢ ker(A — B*)* Uker(A\ — B)*, thus the conditions
of Proposition 1.5.12 holds and the optimality of the energy decay follows.
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1.6.5 Example 5.

Consider the following system given by:

Y (2, 1) — Yoz (x, t) = 0, 0<z<l1,t>0,
0,t) = 0, t>0,
Yo (1,) = bin(t) — me(t) + rk(t) = 0, t>0,
Nee(t) + bine(t) + bon(t) + boy(1,¢6) = 0, >0,
Kie(t) + ber(t) — yi(1,1) = 0, t>0.
with by, b1, by positive constants. Choosing
+b
=1 ; oy =n,ms = &,
0
we get a system in the form of (1.1) with
0 1 0 1
B=1|-by -1 0 ,C=10
0 0 —by 1
In addition,
bp 0 0O 0 10 0 A2
M = 0 1 0 ,Bo = —bo 0 0 ,R: 0 adJ /\I B())C —bo)\
0 0 1 0 00 0 A2 + by

It is easy to check that ®(Bn,n) < 0, and since det(\ — B) = (X + b2)(A\2 + b1\ + bg), then B
is Hurwitz. We also have

|det(iz] — B)[*R ((izI — B)"'C,C) = byz™ + (b§b1 + babT — 2bgb2)2* + b3ba(br1bs + 1),

which is positive for all z € R, we thus obtain an asymptotically stable system. The space W is
given by span{(0,1,0)",(0,0,1)"}, then

P(adj(M — By)C) = (0, —boA, X2 +bg) T #0, VA& o(By).

The spectrum of By is given by o(By) = {0, +i\/by}. The eigenvector of By associated with 0
is equal to (0,0,1)T up to a nonzero constant, thus P(0,0,1)T # 0. For A\ = iy = %iy/by, we
have

Ny = (1,+ip,0)" and Pn, #0.

Moreover, it can be easily checked that C' ¢ ker(AI — Bo)* for all A € o(By). Hence Theorem
1.4.15 applied for m = 0 (as PC # 0), gives the following energy decay estimate

Finally, we may easily verify that for all geometrically simple A € o(B) we have C ¢ ker(\ —
B*)+ Uker(M — B)*. Consequently, if B has geometrically simple eigenvalues (or equivalently if
b2+ bg # b1by), then the optimality of the polynomial decay rate can be deduced from Corollary
1.5.13.
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2 The multidimensional wave equation with
generalized acoustic boundary conditions

2.1 Introduction

Denote by Q a bounded open connected set of R?, d > 1, with a Lipschitz boundary 09 =T
assumed to be divided into two disjoint parts,

r=ryuly,

where I'y is assumed to be closed with a nonempty interior and I'; relatively open in I' which
could be possibly empty. We further assume that I'y N I'; is of class C! in the sense explained
later.

For n € N*, we further fix C € C%!(T, C") and a matrix valued function B € C%1(Ty, M,,(C))
and for every = € T'y, an inner product (-,-), in C™ such that

R(B(z)-, )s < 0. (2.1)

For every x € Ty, let M (z) € M,,(C) be the Hermitian positive-definite matrix associated with

this inner product, i.e. B
(51, 52)90 = (SgM(J?)(Sl,V(Sl, 52 c C™.

From now on we further assume that M is Lipschitz continuous on I'g. For the sake of brevity, if
there is no confusion we use the notation (-,-) to denote (-,+),. The associated norm is denoted
by | - .

We consider the following evolution problem with a Dirichlet boundary condition on I'y and a
dynamical control on I'g, described as follows:

ytt(x?t)_Ay(x7t) =0 ,$6Q7t>0,
y(x t)=0 e el t>0, (2.2)
5w, 1) = (8(x,1),C) ,x €T, >0, '
5,5(:5 t) = Bo(x,t) — Cye(x,t) ,z €Ly, t >0,
with the following initial conditions:
y(z,0) = yo(z), ye(z,0) = y1(z), z€Q, (2.3)
§(z,0) = do(z),z € Io, '

where y is a complex valued function (representing the transverse displacement in the case
Q2 C R and the potential velocity in the case Q C R? with d > 2) and § denotes the dynamical
control variable.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

In a first step, we try to find sufficient conditions that guarantee the strong stability of the
system. Here, as the domain of the associated operator is not compactly embedded into the
natural energy space, we may expect that its spectrum is not only made of eigenvalues. We
prove such a result in our general setting but since Dirichlet boundary conditions are imposed on
a part of the boundary, we were not able to use the single-layer potential technique of [16] and
instead we use a Fredholm alternative technique. Finally, similar assumptions on B and C' as
in the one-dimensional case allow us to show that the associated operator has no eigenvalues on
the imaginary axis, hence we obtain the strong stability by using Arendt-Batty theorem (see [10]
and Theorem 1.3.1). In dimension one, using the compact perturbation result of Russell [46],
the dissipative system (2.2) is not uniformly stable (see |2]| and [37, Rk 2|). In dimension larger
than 2, this argument cannot be used, but nevertheless by using the spectral properties of the
Laplace operator with specific Robin boundary conditions on I'g, we will show that the resolvent
of the associated operator is not uniformly bounded on the imaginary axis and by the frequency
domain approach [23,26,43|, we will conclude that our system is not uniformly stable. Hence
we are interested in proving a weaker decay of the energy. More precisely, we will give sufficient
conditions on I'g, B and C that yield the polynomial decay of the energy of our system (for initial
data in the domain of the associated operator). A first approach is to use a multiplier method (as
in [38,50,53]) but this approach requires a quite strong geometrical assumption on I'g. Hence we
alternatively use the frequency domain approach from [19]. In this case, we find an appropriate
bound for the resolvent on the imaginary axis by using the exponential or polynomial decay of
the wave equation with the standard damping

gi(fﬁ,t) = —y on I'o,
and an assumption on the behavior of R((isl — B)~1C, C) for all real number s whose modulus
is large enough. This leads to quite weaker geometrical assumption on I'g due to the results
from [12, §5] or [28,29| for instance. In particular, with this second approach as I'; can be
empty, we significantly improve results from [16] and [38|.

The chapter is organized as follows. The second section deals with the well-posedness of
the problem obtained by using semigroup theory. Section 2.3 is devoted to the analysis of
the spectrum of the associated operator that is characterized by using a Fredholm alternative
technique. The strong stability of the system is studied in section 2.4 by using Arendt-Batty
theorem. In section 2.5, we show that the resolvent of the operator is not uniformly bounded on
the imaginary axis and deduce that our system is not uniformly stable. Section 2.6 is devoted
to the proof of the polynomial decay of our system by using the frequency domain approach,
while in section 2.8 we prove a similar polynomial decay by using the multiplier method. We
shortly look for the case I'y empty in section 2.7. Finally some particular examples illustrating
our general framework are presented in section 2.9.

In the whole chapter, we assume that I'y is nonempty (without any specification), the case I'y

empty is only supposed in section 2.7 (and in section 2.9). The case d = 1 was discussed in the
first chapter, we assume that d > 1 throughout the remainder of the chapter.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

2.2 Well-posedness results

As usual, to prove existence result for system (2.2) we use a reduction of order argument.
Hence, we define

V={ycHY(Q):y=0o0nT} = H%I(Q),
that is a Hilbert space endowed with the following inner product (yi,y2)y = fol Vi1 Viodzx, and
1
norm ||y||v = (y,y)- The energy space is then

H =V x L*(Q) x (L*(Ty))",

endowed with the following inner product,

((Z/7275);(3¥1,Zl,51))7{—/Vszhdac—i—/
Q

ZEld.TU-f—/ ((5,(51)(1%’ (2.4)
Q Ty

We define the unbounded operator associated with the evolution problem by (A, D(A)),

z y
AU = Ay U= 12| € DA,
B — Cvyyz 0

where D(A) = {U € H : Ay € L*(Q),z €V, % = CTM¢é on I'p}, in the last component oz is
the trace of z on 'y and the boundary condition

dy

v = (6,C) on Ty, (2.5)

is to be viewed in the following weak sense (see [25]):

/Ayapdaz+/ Vchpd:L‘:/ (6, C)vopds,Vp € V. (2.6)
Q Q

1)

If y and 0 are solution of system (2.2) and are sufficiently smooth, we easily check that
U= (y,2,0)" is solution of the Cauchy problem

= AU, U(0) = Uy (2.7)

with Up = (yo,y1,0) -
The energy of our system (2.2) (or (2.7)) is then naturally defined by

Bult) = 10O = 5 ( [ (woPdo+ [ o + [ el “ds). (25)

for U(t) = (y,y:,0) € V x L*(Q) x (L?*(T'g))™ solution of (2.7).

Hence, we proceed by proving that A is m-dissipative.

Proposition 2.2.1 The operator A is m-dissipative.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Y
Proof. Let U = | z | € D(A). Then as z € V, using (2.6) we get:
0
Y Y
Alz],|= = / VzVydz —|—/ Ayzdz +/ (Bd — Cvypz,0)rnds
) ) Q Q Ty
H
= /Vszdm—/Vszda:—i—/ (0, C)fyozds—l—/ (Bo — Cypz,0)rnds.
Q Q To To
Consequently,
R(AU,U) = R(BJ,d)rnds <0, (2.9)
Lo

and thus A is dissipative.

We would like to show that there exists A > 0 such that A\ — A is surjective. Let A > 0 be
given. For F = (y1,21,61) " € H, we look for U = (y,2,6)" € D(A) such that

(M - AU =F,
or equivalently
Ay — 2z =11,
Az — Ay = 2, (2.10)

()\I — B)5 + Cvpz = 0.
Assume that such a (y, z,8) " € D(A) exists, then z = Ay — y1, and as A ¢ o(B), J is given by

§= (A = B)™ (61 + Co (1 — A\y)).- (2.11)
Hence, y € V satisfies
Ny — Ay =21 + \y1, (2.12)
and the boundary condition
0
a—z = (6,C) on I'y.

We first look for an associated weak formulation of this problem on y (and then prove that it
admits a unique solution using Lax-Milgram lemma). Multiplying (2.12) by a function ¢ € V,
integrating the obtained identity in 2 and by (2.6) (allowed since we assume that y € V' exists
with the property Ay € L?(f2)), we find

ax(y, ) = Lr(p), Vo€V, (2.13)
where ay and Lp are given by
o) = [ Nypdo+ [ edat [ NOI-B)IC.Chopds, (210
Q Q To
LF((P) = /(2’1 + )\yl)cﬁdx +/ (()\I — B)’l(C’Yoyl + 51), C) Yopds. (2.15)
Q o
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Clearly, L is a linear continuous functional on V, and @, is a sesquilinear continuous form on
V. Finally, ay is coercive on V', indeed, for any y € V, we have

wwwzﬁlﬁfﬂ+éﬁw%mﬁé«M—EAQCW%W%'
0

But (2.1) implies that R((Al — B)~*C,C) > 0, since
R (A — B)™'C,C) = R (u, (A — B)u) = A|ul|* = R(u, Bu) >0,

with u = (\] — B)~!'C. Hence, Rax(y,y) = ||y||?-, which implies that ay is coercive.
Applying Lax-Milgram Lemma, there exists a unique solution y € V' of (2.13). In particular,
taking ¢ € D() in (2.13), we get

My — Ay = 2 + Ayy in D'(Q). (2.16)
We deduce that Ay € L?(€2). Substitute A2y by Ay + 21 + Ayp in (2.13), we obtain

/ Ayadz + / VyVda + / (()\I — B) ' Oy, c) No@ds
Q Q Ty
- / (1= B)™ (61 + Crom), C) vopds.
o

Defining § = (M — B)71(61 + Cyoy1 — CAyoy) € ((L*(T9))", we get % = (0,C). By defining
z = Ay — y1, we deduce the surjectivity of A\l — A. =

Remark 2.2.2 From the previous proof, we see that if 0 is not an eigenvalue of B(x), for all
x € Ty, then A is bijective and A~ is bounded. The converse also holds, see Proposition 2.4.1
below.

Since A is m-dissipative, then Lumer-Phillips theorem implies that A generates a Cy-semigroup
of contractions on H (see for instance [42]), and allows us to state the following results.

Corollary 2.2.3 (i) For an initial datum Uy € H there exists a unique solution U €
C([0,+00),H) of (1.3). Moreover, if Uy € D(A), then

U € C([0,+00), D(A)) N CH([0, +00), H).
(ii) For each Uy € D(A), the energy Eo(t) of the solution U of (1.3) satisfies

Ly =w [ (B5,8)ds <0,
at .

and therefore the energy is non-increasing.
Proof. (i) is a direct consequence of Lumer-Phillips theorem, (ii) holds simply since

dE(t) . dU(t)

S =R,

o U(t) = RIAU (6. U (1)

forall U € D(A). m
Remark 2.2.4 If Uy € D(A™), then
U € ([0, +00), D(A™)) N C*([0, +00), D(A™ 1)) N...n C™([0, +00), H).
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2.3 The spectrum of A

As D(A) is not compactly embedded into #H, we can expect that the spectrum of A is not
only constituted of eigenvalues. This is indeed the case if Iy is empty and in the setting of
example 1 below as shown in [16]. Our aim is to prove such a result in our general setting. Since
Dirichlet boundary conditions are imposed on a part of the boundary, we were not able to use
the single-layer potential technique of [16] and we instead use a Fredholm alternative technique.

Recall that an operator T' from a Hilbert space X into itself is called singular if there exists
a sequence u, € D(T') with no convergent subsequence such that ||u,|x = 1 and Tw,, — 0 in
X, see [54]. According to Theorem 1.14 of 54| T is singular if and only if its kernel is infinite
dimensional or its range is not closed.

Now define

Y:={AeC:3z eTly: A — B(z) is not invertible }.

From the continuity of B, ¥ is a compact subset of C.

We state in the following theorem some spectral properties of A (compare with Theorem 3.2
of [16]).
Theorem 2.3.1 The following results hold:

1. If X € X, then A — A is singular,

2. If X & %, then A — A is a Fredholm operator of index zero.
Proof. To prove the first point, we fix A € 3. Then there exists zg € I'g and § € C", § # 0 such

that
(M — B(x9))0 = 0.

Denote by —A,, the positive self-adjoint operator defined by
2 Jdy
D(-Ay,) ={yeV:Ay e L*(Q) and F 0 on I'o},

and

—Any = —Ay,Yy € D(—Ap,).

Denote by {7 }en- the (discrete) spectrum of —A,, (repeated according to their multiplicity)
and let ¢y be the corresponding orthonormalized eigenvectors.

According to the Fredholm alternative, for any complex number p we have the two following
cases:
i) either pu # —)\i, for all k € N* and for an arbitrary ' € V', there exists a unique solution of
y eV of

/ (uyw + Vy - Vo) dz = F(w),Yw €V, (2.17)
Q
ii) or there exists kg € N* such that u = —)\io and then for any F' € V' such that

F(pp) =0,Vk € N* : A2 = —p,

there exists a unique solution of y € V' (orthogonal to the ¢y, for all k € N* : A7 = —p) of (2.17).
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Now we set
Un = (Yns \Yn, ),
with
On = Mnd,

where (1,,),, is the sequence associated with zp built in Lemma 2.3.3 below and y,, € V' is the
solution of

/ Ny + Vy, - Vo) do = Fy(w),Yw €V, (2.18)
Q
where F,, € V' is defined by
F,(w) := Z a,gn)/ wkwdac—i—/ (O, C)w do,Yw €V,
kEN*A2=— )2 @ To

with
ol = —/F (60, C)@p do, Yk € N* 1 A2 = — )2,
0

for A € X such that A2 € o4(An).
If \2 ¢ 04(A), we simply define F,, by

F,(w) ::/F (0p, C)w do,Yw € V.
0

The existence of a unique solution y,, of (2.18) in both cases is a consequence of the Fredholm
alternative mentioned above.

Let us proceed first with the case A2 € 04(A,,). The existence of ¥, is justified by the fact
that
Fo(pr) = 0,Vk € N*: X2 = —\2,

Before going further we notice that
a,gn) —0asn— oo, Vk € N*: \} = —\2. (2.19)
Indeed, by definition we have
a1 S Wl sr-v/2 oy w1 S Il 172 |0

and by Lemma 2.3.3 below we obtain (2.19). A direct consequence of this property is that

| Fnllv: — 0 as n — oo,
and again by the Fredholm alternative

lynllv — 0 as n — oo. (2.20)

Now applying Green’s formula (as in Proposition 1.2.1), we see that y,, € V solution of (2.18)
satisfies

Ny~ Ayp=goi= > Vg in D/(Q). (2.21)
kEN*:A2=— )2

35



2 The multidimensional wave equation with generalized acoustic boundary conditions

as well as 9
% = (8,,C), on Ty, (2.22)
Consequently, U,, belongs to D(.A) and
AU, — AU, = (0, gn, (B(zg) — B)dn + ACyy). (2.23)
Let us show that
AU, — AU,, - 0 in H as n — oo. (2.24)
Indeed, by definition we can write
lonlltemy = > logP
kEN*:AZ=—)2

and we directly deduce from (2.19) that
gnllL2() — 0 as n — oo.
For the third component by the triangular inequality and a trace theorem, we have
[(B(z0) = B)dn + ACynllL2(r) S 1(B(20) = B)dnllL2(rg) + lynllv-

Since the second term of this right-hand side tends to zero as n goes to infinity, it remains to
estimate the first term: But B being uniformly continuous, we have

Ve > 0,3, > 0: |z — 29| < ne = [|B(zo) — B(x)|| <e.

But by construction, the support of d,, is included in B(xg,e,) NTo with &, < %, for some C > 0
(independent of n). Hence, for a fixed € > 0, and for n > n%’ we have

|1B(x0) — B(x)|| <¢&,Vz € supp by,

and we deduce that
1(B(z0) — B)onllr2(ro) < €lldnllzz(ry) = €lld]l-

This shows that
I(B(zo) — B)énHLz(pO) — 0 asn — oo,

and finishes the proof of (2.24).
It remains to check that
Ul ~ 1. (2.25)

Indeed, by definition, we have
1Tl = Nynlls + X219l 7200) + 1600720y

hence by (2.20), we get
10l ~ 182 cyy = 18112 > 0.

If \2 & 04(A,,), then the solution y,, € V of (2.18) satisfies

Ny, — Ay, =0, in D'(Q),
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and

OYn
a% = (6,,,C), on T,

thus U, belongs to D(A) and satisfies (2.25) with g, = 0, i.e.
(AU, — AU,,) = (0,0, (B(x¢) — B)dn, + ACyp).

Moreover, it clearly satisfies both (2.24) and (2.25).

Note that (2.25) also implies that (U,,) has no convergent subsequence. Indeed, if a subsequence
(Uy,,) is such that
Un, = U inH, as k — oo,

then by (2.20), (1, )r converges in L?(T'g), which contradicts Lemmas 2.3.3 and 2.3.4.
In conclusion, we have shown that A — A is singular.
For any A € C\ X, we denote by Ay the linear (and continuous) operator from V into V'
defined by
(Axu, v)yr_y = ay(u,v),Yu,v € V,

where ay is defined by (2.14) (well defined because A € C\ X). According to the proof of
Proposition 1.2.1, Ay is an isomorphism for all positive real numbers. Hence, if we show that for
any A\, € C\ X, Ay — A, is a compact operator, then by a standard perturbation result, Ay will
be a Fredholm operator of index zero for any A € C\ X. To prove our compactness property, we
notice that

(Ax = A u,vyyry = (A= MQ)/QuT)dx
+ /F (MM = B)~'C,C) — u((uI — B)™LC, C)youryotds.
0
Hence, due to the continuity of B and C, and Cauchy-Schwarz’s inequality, we see that
((Ax = A u,vyvrov] <IN = ?[l|ull 2oy 10l 220

+ OO wllull 2oy 1ol 22 (ro).

where C'(\, ) is a positive constant depending on A and p. Hence, by a trace theorem, we deduce
that for any € € (0, 3)

[((Ax = Apu,v)viv| <IN = i[llull 2y vl 2o

+ COMCullv ol .. g

where C; is a positive constant depending on ¢.
In conclusion, for any e € (0, %) if we set

3+e 1te
HE () ={ve Hz™(Q):v=0o0nTI4},

that is clearly a Hilbert space equipped with the inner product of H 3+e (Q), we have shown that
there exists a positive constant C'(\, i, €) depending on A, p and € such that

((Ax = Auvhyr—v| < CO s llullvllo] Vv e V.

H3 ()
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Equivalently, this means that

(A — A)u,v)vr_v|
sup

veV,v#0 HUHH%+5(Q)

<O s 8)lullv.

1 1
Accordingly, as V' is dense in HﬁjE(Q), we deduce that (Ay — A, )u belongs to (HIE;FE(Q))’ with

[((Ax — Ap)u, v)yr_v|

[(Ax = Apull 1. = sup
() veHF%;E(Q),v;éO HU”H%*E(Q)
[((Ax = Ap)u, v)vr v |
= sup
vEV,0#£0 ||UHH%+E(Q)

< C()‘> H, E)HUHV

1 1
As V is compactly and densely embedded into Hﬁjg (), by duality, (H131+8(Q))’ is also com-
pactly embedded into V’ and therefore Ay — A, is a compact operator from V into V.
Now we readily check that, for any A € C\ X, we have the equivalence

y € ker Ay <= (y,\y, =AM — B)"1Cyy)" € ker(\I — A). (2.26)

This equivalence implies that for any A € C\ X, ker(A] — A) is always finite-dimensional and
has the same dimension as ker Ay. This last property follows from the fact (used below) that
the expression

(y7 Z))\,V = ((y7 )\ya _/\()‘I - B)_lc’)’OZ/)T7 (27 )\Z, _>\()‘I - B)_IC’YU’Z)T)H’

is an inner product on V whose associated norm is equivalent to the standard one. Denote by
{y D}, an orthonormal basis of ker Ay for this new inner product (for shortness the dependence
of X is dropped), i.e.

(y(l)uy(j)))\,v = 5ZJ7VZ7] =1,....,N.

Finally, for all i =1,..., N, we set
79 = (y@, xy, =AM = B) "' Cryoy™) T,

the element of ker(A — A) associated with y(® that are orthonormal with respect to the inner
product of H.

Let us now show that for all A € C\ X, the range R(A — A) of AI — A is closed. Indeed, let
us consider a sequence Uy, = (Yn, 21, 6n) | € D(A) such that

()\I — A)Un — L'n — (yln,Zln,(sln)T — F = (yl,Zl,(sl)T in H. (227)
Without loss of generality we can assume that
(Up, ZDVyy = =3, Vi=1,...,N. (2.28)

where |
Qn,i = ((07 Yin, _()\I - B)il((;ln + C’yOyln))T7 Z(’L))H
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Indeed, if this is not the case, we can consider
Up=Up— Y 32"
i=1

that still belongs to D(.A) and satisfies
(M — AU, = F,,

as well as

(U, ZDVgy = —an3,Vi=1,..., N,

by setting ‘
Bi = (Un, Z(Z))H +on,Vi=1,...,N.

Note that the condition (2.28) is equivalent to
WY, y)ay =0,¥i=1,...,N

In other words,
Yn € (ker Ay)1Av, (2.29)

where -2V means that the orthogonality is taken with respect to the inner product (-, ) AV
Returning to (2.27), the arguments of the proof of Proposition 1.2.1 imply that

Ayyn = Lp, in V',
where Lp was defined by (2.15). But it is easy to check that
LFn — LF in V/.

Moreover, as A € C\ ¥, A, is an isomorphism from (ker Ay)*V into R(Ay), hence by (2.29) we
deduce that there exists a positive constant C'(\) such that

[yn = ymllv < CMILE, — Lr, |lvr, Vn,m € N.
Hence, (yn)n is a Cauchy sequence in V', and therefore there exists y € V such that
Yn — y in V|

as well as
A)\y = LF in V/.

Setting z = Ay — y1 and § = (A\[ — B)~(61 — Cp2), we deduce that U := (y, z,8) " belongs to
D(A) and
(M - A)U =F.

In other words, F' belongs to R(A — .A). The closedness of R(A — .A) is thus proved.
At this stage, for any A € C\ X, we show that

codim R(A)) = codim R(\ — A), (2.30)
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where codim W is the dimension of the orthogonal of W.
Indeed, let us set N = codim R(A)), then there exist N elements ¢; € V,i = 1,..., N such
that
fe R(A)\) — fe V' and <f790i>V’—V =0,Vi=1,...,N.

Consequently, for F' € H, if Ly (that belongs to V') satisfies
Lr(p) =0,Yi=1,...,N, (2.31)
there exists a solution y € V' of
A)\y = LF in V’,

and as usual the arguments of the proof of Proposition 1.2.1 implies that F' is in R(A] — A).
Hence, the N conditions on F' € H from (2.31) allow to show that it belongs to R(A — A), and
therefore

codim R(A] — A) < N = codim R(A)). (2.32)

This shows that Al — A is a Fredholm operator.
Conversely, set M = codim R(A — A), then there exist M elements ¥; = (y;, z;,0;) € H,i =
1,..., M such that

FeRWAN—-A) < FeHand (F,V;)4y =0,Vi=1,..., M.
Then, for any f € L*(Q2), if
(fszi)1200) = ((0, £,0) T, W)y = 0,Vi = 1,..., M, (2.33)
there exists U = (y, z,6) | € D(A) such that
(M — AU = (0, f,0),
or equivalently (using the definition of A and the invertibility of A\I — B)

z = Ay,
Ny — Ay = f,
§ ==X\ — B)" 'Cyy.

Multiplying this second identity by ¢ € V, integrating in Q and using Green’s formula (2.6), we
obtain that

ax(y,p) = /wadrc,Vw ev.

This shows that
R(Ay) D {f € L*(Q) satistying (2.33)}.
Hence,

codim R(Ay) < M = codim R(A — A). (2.34)

The inequalities (2.32) and (2.34) imply (2.30).
We conclude the second point by using the fact that A, is a Fredholm operator of index zero
for any A\ € C\ X, the equivalence (2.26) and the identity (2.30). =
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Corollary 2.3.2 X\ € X if and only if A — A is a Fredholm operator of index zero.

Lemma 2.3.3 For every interior point xog of Lo, there exists a sequence (n,)nen+ of functions
in L?(Lg) such that
[7nllz2ry) = 1,Vn € N¥, (2.35)

as well as

||77n||H_%(FO) — 0 as n — oo. (2.36)

Moreover, the support of ny, is included in B(xg,e,) NTo with e, ~ % and therefore the sequence
(Mn)nen+ has no convergent subsequence in L*(Ty).

Proof. By definition of the regularity of the boundary (see for instance [25, Def 1.2.1.1]), there
exist a neighborhood W of zg in R? and a local system of cartesian coordinates (y/,yq) and a
Lipschitz mapping ¢ from W’ the projection of W on R4! to R such that W is a hypercube
and

QNwW = {(,ya) €W :yqa < 0¥},
ConW = {(,ya) €W :ya= ()}

Denote by y(, the point in W’ such that
(y0: £ () = o

Fix a function n € D(R%"!) with a support in B(0,1) and such that
H’?HL%Rd*l) =1

1
n

Then for n large enough namely such that B(yf, =) C W/, we take

d—1

(', o) =n"z nin(y — ), vy € W’

and extended by zero outside I'g N W.
We directly check that the support of 7, is (in this proof || - ||2 means the Euclidean norm of
RI=! or RY)

Su= {0 : I ~ vl < )

Hence, for (v/,¢(y')) € Sy, we have

1 W) = (o ewo)llz ~ 1y — woll2 + ey — e(wo)| ~ 1y — voll2,

and the property on the support of 7, follows.
Now by a change of variables we see that

Il ~ ™ [ty — )Py = [ )Pz,
w’ Rdfl

and the property (2.35) holds (up to a multiplicative factor equivalent to 1).
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To prove (2.36), as L%(T) is compactly embedded into H_%(Fo), by (2.35) there exists a
subsequence, still denoted by (n,,), such that

Mp — N in Hfé(l“o) as n — 0o,
for some n € H _%(Fo). But this property implies that
Nn — n in D'(Ty) as n — oo.

As we will show that
nn — 0 in D'(Ty) as n — oo, (2.37)

we deduce that n = 0 and (2.36) follows.

In the same manner, if (1,) would have a convergent subsequence in L?(Tg), then by (2.37),
this subsequence would converge to 0 in L?(Ty), which contradicts (2.35).

It then remains to show (2.37). For that purpose, fix 1) € D(I'y), then by a change of variables,
we may write

(o) = /F n(2)0(z) do

d—1
= n?/ (Y’ —yo))(y' s ely 1+Z\ ) |2 dy/
1—d
= nT’Yn(@b),
where
W) = /01 y0+ (y6+ 1+Zy |2d,z
Since ¢ is Lipschitz, we deduce that
z
IS [ [otah + e+ )|
B(0,1 n
As
z
[ @ o+ Zootah+ )] d = teo \/ ldz as = oo
B(0,1) n

we have shown that 7, (1)) remains bounded as n becomes large. Therefore, we deduce that
(M, ) — 0 as n — oo,

which proves (2.37). m

Lemma 2.3.4 Let xg € OI'g. Then the statements of Lemma 2.3.3 remain true.

Proof. As in the previous lemma there exist a neighborhood W of zy in R%, a local system of
cartesian coordinates (y’,y4) and a Lipschitz mapping ¢ from W’ the projection of W on R~
to R such that W is a hypercube and

QNW = {(V,ya) €W 1 ya < 0(¥)},
LNwW = {(.,va) €W :ya=0{)}.
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Denote by y(, the point in W’ such that

(40, ¢(%0)) = o,

and set

@y) = (v, e(y)), vy e W,
that is a bijection from W' into I' N W. Without loss of generality we may suppose that y, = 0.
Denote by Ty the set ®~*(To N W) C W', and by I' C W' the set I’ = &~ HToN T NW). Our
assumption that I'o N T'; is C' means that the curve I’ is a C! curve in W, in other words,
there exist a local system of Cartesian coordinates (z”,zg_1) and a C' mapping ¢ such that I’
coincides near 0 with the curve

{(Z//,’l/J(Z//)) . Z// c W//},

while I'{j coincides near 0 with
{(Z”wzd—l) 2yl > w(zﬂ),VZ” c W”},

where again W” is a hypercube of R%~2. Again without loss of generality we can assume that
(0,7(0)) = 0 as well as V(0) = 0.

Now instead of using the coordinates 3/, we use the coordinates (2", z4_1) (and replace W’ by
another hypercube w" ) and as before we perform the change of variables

The difficulty lies in the fact that the curve I’ becomes now the curve

2//

éd—l - nw(;%

that is tangent to the hyperplane Z;_; = 0 but depends on n and similarly the domain I
becomes the domain

that also depends on n.
But the regularity on ¢ allows to show that there exists € > 0 small enough and ng large
enough such that for all n > ng

/4
()] < e V|52 < 1. (2.38)

n

Indeed, for 2" fixed such that ||2”|| < 1 and by considering the mapping f(t) = ¢(

write . L, L,
£(1) :/ Vi <m> -
0 n n

o)l e (5)
n " o<1 n
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2 The multidimensional wave equation with generalized acoustic boundary conditions
This leads to (2.38) because

sup
fld|l2<1

Vi (ﬁ))‘ = sup ‘V@/J (w”)} ,

" lw[2< 2

that tends to zero as n goes to infinity.
Now we mainly proceed as before: we fix a function € D(R?~!) with a support included in
{(2",24-1) € B(0,1) : £4—1 > 2¢} and such that

Hn||L2(Rd+*1) =1

Then for n large enough, we take

d—1

(2", 2a1), (2", 2a-1)) = 02 (2 n20-1))), V(2" 2a-1) € W

and extended by zero outside its support.
We directly check that the support of 7, is of size of order % and is included in I'g N W. At
this stage the proof is continued as in the previous Lemma. m

2.4 Strong stability

In [53] and |2|, where the problem is one dimensional in space (i.e. d = 1), the strong stability
was proven using Arendt-Batty theorem (see [10] and Theorem 1.3.1) since the resolvent of the
infinitesimal generator considered therein is compact and therefore the study of o(A) N iR is
reduced to the study of purely complex eigenvalues of A. In our case, as D(.A) is not compactly
embedded in H, this method partially fails to achieve the proof of strong stability. Nevertheless,
with similar assumptions on B as those of the one-dimensional case, we are able to obtain the
strong stability by using Arendt-Batty theorem (see Theorem 1.3.1).

In view of Theorem 2.3.1, o(.A) is not purely formed of eigenvalues and therefore we have to
analyze g4(A) NiR as well as o(A) \ 04(A)) NiR.

We start with the eigenvalues of A on the imaginary axis.
Proposition 2.4.1 A is an isomorphism if and only if 0 & 3.

Proof. By Corollary 2.3.2, 0 ¢ ¥ if and only if A is a Fredholm operator of index zero. Hence,
the conclusion follows if we show that

ker A = {0},
or equivalently, due to the proof of Theorem 2.3.1,
ker A() = {0}

But in view of the definition of Ag, y € ker Ay if and only if y € V' is solution of

alvop) = [ VyTipds = 0.¥p € V.
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From the coerciveness of ag on V', we conclude that y = 0. =
For the other eigenvalues on the imaginary axis, we need the positive self-adjoint operator
—Ap;, defined by
D(=Apir) = {y € Hy() : Ay € L*(Q)}

and

—Apiry = —Ay, Yy € D(—Apir).
Denote by o(—Ap;) = {/\2Dirk}k€N* the (discrete) spectrum of —Ap;, (repeated according to
their multiplicity) and let yp;,; be the corresponding orthonormalized eigenvectors.

Proposition 2.4.2 Assume that
(A1) Viz € ¥,z € R*, Ja, > 0: R((iz] — B(z))~'C(x),C(x)) > oz, Vo € T,
(Ag) XN {iiADir,kv ke N*} =0,
(A3) Viz € ¥ : C ¢ ker(izI + B*)* on T,
(Ay) Viz € ¥ : VM C Ty : meas M > 0 : 3z € M : (n,C(x))y # 0 for all nonzero
n € ker(izI — B(x)).
Then
ogq(A) NiR* = 0. (2.39)

Proof. Assume that i)\ is a non zero eigenvalue of A in iR. Let U = (y, 2,8)" € D(A), U # 0
be the associated eigenvector. Then, we have

AU = iAU,

which implies z = Ay,
2Ny —Ay=0in Q,

as well as
(1A — B)d = —iACy on I'y. (2.40)

Now we distinguish two cases:
i) if i\ € X, then by the proof of Proposition 1.2.1, we deduce that y € V satisfies

ai)\(yv(p) = 07V<P eV.

In particular, taking ¢ =y, we get
i)\ (y> y) =0.
Taking the imaginary part of this identity, we find

X | R(GA — B(@) 7€), C(a)) ho(e)  do = 0.

Since A is different from zero, we get

g RGN — B(az))flc(x), C(x))]’yoy(x)]2 do =0,

and by the assumption (A;) we find that

y =0 on I'p.
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Due to (2.40) and since i\ € X, we deduce that 6 = 0 and then % = (6,C) = 0, thus y satisfies

Ny —Ay=0 1inQ,

y=20 on I, (2.41)
% =0 on Fo,

By Holmgren’s theorem we deduce that y = 0, which is impossible (otherwise U would be zero).
i) if i\ € X, then we again distinguish two cases:
a) if y = 0 (then § # 0 on a set M of positive measure) and by (2.40), we find

(iA — B)§ = 0 on T.
On the other hand, (2.5) here implies
(6,C) =0on Ty,

which is in contradiction with (Ay).
b) if y # 0, then (2.40) implies that

Cy € R(i\ — B) = ker(i\] + B*)* on T.
Hence, by our assumption (A3), we find that
y =0 on I'p.

This implies that y € H} () satisfies
/(—Azytp +Vy-V@)dr =0,Yp € HY(Q) C V.
Q

Consequently, y € D(—Ap;,) and satisfies
—Apiry = Ny.

We have shown that there exists k € N* such that A2 = )‘ZDirk' Coming back to (2.40), we see
that
(ii)\Dir,k - B)(5 =0on Fo.

From our assumption (Ag) we deduce that
6=0on Fo.
This property and the boundary condition (2.5) then imply

0
a—i:()onf‘o.

By Holmgren’s theorem we deduce that y = 0, which is impossible.
|

Proposition 2.4.3 If (A1) to (A4) from the previous proposition hold, if 0 ¢ ¥ and if N iR is
countable, then the Cy-semigroup associated with A is strongly stable.
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Proof. Propositions 2.4.1 and 2.4.2 guarantee that
oq(A) NiR = 0. (2.42)

Let us now show that
o(A)NiR C ¥ NiR. (2.43)

Indeed, if iA € o(A) NiR, then either ¢\ is in ¥ as required, or ¢\ is not in 3, but then by
Theorem 2.3.1, i belongs to o4(A) NiR, which is impossible due to (2.42).

The two properties (2.42), (2.43) and the assumption that ¥ N 4R is countable finally allow to
apply the theorem of Arendt-Batty. m

To end up this section, in the case when B and C' are constant (in that case ¥ = o(B)), let
us show that the sufficient conditions from Proposition 2.4.3 are “almost" necessary. Namely we
prove the following result.

Proposition 2.4.4 Assume that B and C are constant on Iy and that (A1) holds, which in this
case reduces to
Viz & o(B),z € R*,R((iz — B)"'C,C) > 0.

Then (Az), (As), (A4) and O & o(B) hold if and only if the Cy-semigroup associated with A is
strongly stable.

Proof. As ¥ NiR = ¢(B) NiR is finite, by the previous Proposition, the conditions (As2), (As),
(A4) and 0 € o(B) are clearly sufficient (since (A1) holds). Hence, it suffices to show that they
are also necessary. For that purpose, we show that if (As), (As), (A4) or 0 & o(B) does not
hold, then A has an eigenvalue on the imaginary axis (since this condition directly implies that
the Cy-semigroup associated with A is not strongly stable).

Firstly, if we assume that 0 € o(B), then there exists a nonzero § € C" such that

By =0.
Hence, we consider y € V solution of
{ Ay =01in Q,
9% — (5,C) on Iy,

Such a solution exists and is the unique solution y € V' of
/ Vy-Vodr = ((5,0)/ pdo,Vp € V.
Q Lo

Since we easily check that (y,0,0) belongs to ker A, we deduce that 0 is an eigenvalue of A.
Secondly assume that (A2) does not hold, then this means that there exists k& € N* such that

iApirg € 0(B) or — iXpirk € o(B).

Assume that iAp;, 1, € o(B) (the other case is treated in the same manner), then there exists a
non-zero 6 € C™ such that
(iXpirpl — B)dj, = 0.

Now we distinguish the case (dx,C) = 0 or not:
i) if (8%, C) = 0, then we take (0,0, 0y) that belongs to ker(iAp;, il — A) as easily checked.
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i) if (0x, C) # 0, then (Ypir i, iADir kY Dir ks @k0k) belongs to ker(iAp;r il — A) with aj, being
chosen as

ap = ((3/.3,C’)_laygj’]C on I'y.
Thirdly, if (A3) does not hold, then there exists iz € ¥ such that
C € ker(izI + B*)* = R(izI — B). (2.44)
This means that there exists ¢ € C™ such that
(izI — B)d¢ = C. (2.45)

Consider y € V the solution of (compare with (2.17))
/ (—2%yw + Vy - Vo) dx = / hyow do,Yw €V, (2.46)
Q I'o

with h € L?(Ty) arbitrary if 22 € 04(—Ap). If 22 € 04(—A,,), then we fix h satisfying
/ hyopr do = 0,Vk € N* : \Z = 22 (2.47)
To

Hence, the Fredholm alternative (see the proof of Theorem 2.3.1) implies the existence of a
solution y of (2.46).

Such a h € L?(Ty) always exists. Indeed, assume that there exists k € N* such that A} = 22
Then we notice that the trace of vopp, k € N* such that /\% = 22 are linearly independent as
element of L?(T'y), indeed if there exists oy, € C such that

> ook =0in L*(T),
keEN*:\Z =22

P = Z Pk

kEN*:)\i:zz

then

is still an eigenvector of —A,, (of eigenvalue z?) and satisfies the additional Dirichlet boundary
condition:
Yo = 0 in L*(Tp).

Hence, by Homlgren’s theorem, ¢ = 0 in 2 and therefore ap = 0 for all £ € N* such that
A2 = 2% Let {4 : k € N*, A2 = 22} in L*(T'y) be the orthonormal system constructed by the
Gram-Schmidt process. Then starting with an arbitrary hg € L?(T'g), the function h given by

h=ho— > (/ ook dU) Yk,
kEN*: A2 =22 To

fulfills (2.47).
Returning to (2.46), by Green’s formula, we see that y € V satisfies

—2%y — Ay =0in Q,
%:honfo.
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Now due to iz € ¥ and (2.45), we see that
0 := —izydo + adg, (2.48)
with 0 # &y € ker(izl — B) and any function o € L?(T'g) satisfies
(izI — B)d = —izCy on T'y.

Again we distinguish the case (C,dy) = 0 or not.

i) if (C,09) = 0, then we take (0,0, dp) and check that it belongs to ker(izI — A).

i) if (C,80) # 0, then we take (y,izy,d)", where y € V is the unique solution of (2.46) (with a
h € L*(T) fulfilling (2.47)) and § given by (2.48) with

a = (60, C) ' (b +izy(dc, O)).
In that way, the triple (y,izy,d)" fulfills

0
8—3 = (6,C) on Ty,

and hence belongs to D(A). Again, easy calculations lead to (izI — A)(y,izy,d)" = 0.
Finally, if (A4) does not hold, then there exists iz € ¥ and a non zero § € C" such that

(izI = B)d =0

with (0,C') = 0. In that case, we take (0,0,0) and easily check that it belongs to ker(izI — A).
|

2.5 Non uniform stability of A

As before, in [53] and [2] since the problem is one dimensional in space, a perturbation result
(see |44,46]) was used to prove the non uniform stability of the generated Cy-semigroup generated
by A. In our case this cannot be used to prove the non uniform stability. But adapting a method
from [50] we can prove a non uniform stability result. This method is based on a frequency domain
approach, namely we use the following result, called Huang-Priiss Theorem (see 23|, [43] or [26]):

Lemma 2.5.1 A Cy-semigroup e'* of contractions on a Hilbert space H is exponentially stable,
i.e., satisfies
|e"“Uolli < C e !|Uollg, VUo € H, Vt=>0,

for some positive constants C' and w if and only if
p(L) D iR, (2.49)

and
sup [|(i8 — £) 71| < oo, (2.50)
BeER

where p(L) denotes the resolvent set of the operator L.
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Our goal is to check that (2.50) does not hold. For that purpose, we introduce the positive
self-adjoint operator —Apg defined by

%

D(=AR)={y € H*(Q)NV : o

+ky=0o0n Ty},

where k = (C,C) = C*MC > 0, and
—ARy = —Ay,Vy S D(—AR)

Denote by {)\%,k}kzeN* the (discrete) spectrum of —Ap (repeated according to their multiplicity)
and let yi be the corresponding orthonormalized eigenvectors. Without loss of generality we can
assume that the Ag’s are positive. As —Apg has a compact resolvent, Arj goes to +00 as k
goes to +o00.

The index R was chosen because the boundary

0
£+Hy:00nfo
ov

is of Robin type.
Recall also the following trace inequality from [20]

/F ful? do < Jlull 2oy lully Vu € V- (2.51)
0

Indeed, it suffices to apply the standard trace theorem
1,1
[0l (roy S Nvllwraa), Yo € WHH(Q),

with v = 2 to find
/F 2 do < 2] 1y + IV e,
0

and by Leibniz’s rule, Cauchy-Schwarz’s inequality and Poincaré’s inequality we obtain (2.51).

Proposition 2.5.2 For all k € N*, take pup = Ary. Then there ewists a sequence of elements
U € D(A) such that for all k € N*:

1Uklls = 1, (2.52)
_1
|G — AUkl S 1y, ° - (2.53)
Proof. Fix an arbitrary k£ € N*, then we define Uy, as follows:
Ui = py " (Uns i1, ) |

where
5k = —Cyk on FO

By this choice we check that Uy belongs to D(A) because

o
(6, C) = —(Cyp, C) = —kyp = % on Tg.
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First, by definition, we clearly have
1UklI% > NlykllL2) = 1,
which proves (2.52). Now by construction, we see that
(ipe — AUy = 11, (0,0, (ipe — B)Sg, + ipCye)- (2.54)

Moreover, we have
(ipw — B)ox + ipCyr, = BCyy.

This identity in (2.54) yields

G = A = 1 [ [BCulRrdo S i [ o
Fo 1—\0
Applying the trace estimate (2.51) we obtain
G — ARG, S 1 Nlywllv ~ g
This proves (2.53). =
Theorem 2.5.3 The Cy-semigroup associated with A in H is not exponentially stable.

Proof. The only non trivial case is the case when (2.49) holds for A. In that case we need to
show that (2.50) does not hold. Indeed, setting vy, = (iur — A)Uy (that cannot be zero because
(ip, — A) is invertible) we then have

, -1
e i L LT
WEH, W0 (R4
[ (ipe — A) W |l
- 9% ll%
Ukl
| (i — AUl

Hence, by (2.52) and (2.53), we deduce that

G — A) Ml 2y 2 Vi
which implies that (2.50) does not hold and the proof is thus complete. m

2.6 Polynomial stability: a frequency domain approach

In this section we prove under some conditions the polynomial stability of the energy of the
semigroup generated by A.We use the following result from [19] (see also [14,15]).

Theorem 2.6.1 Let (T'(t))i>0 be a bounded Cy-semigroup on a Hilbert space H with generator
A such that iR C p(A). Then for a fized oo > 0 the following conditions are equivalent:
()
I|R(is, A)|| = O(|s]%), s — oc.
(i)
IT()A™ =0t ), t — 0.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Consider the system

ug(x,t) — Au(z,t) =0 |2 € Q,t>0,
u(z,t) =0 ,xel,t>0, (2.55)
%(m,t):—ut ,x €L, t >0,

v

Define the operator A corresponding to the system (2.55) by

AU = (v,Au)",U = (u,v)" € D(A), (2.56)
with
du
ov
In the next two propositions we use the exponential or polynomial stability of system (2.55)

to prove a polynomial stability of system (2.2) with a certain decay rate depending on the type
of stability of (2.55).

DA)={UcH:AucL*Q),veV,—=-vonly}, H=VxL*Q).

Proposition 2.6.2 Assume that the energy of system (2.55) is exponentially stable and iR C
p(A). Suppose moreover that there exist p > 0 and a > 0 such that for s € R with |s| large
enough we have

. 1 (6
R((isl — B)""C,C) > mE (2.57)
then the energy of the solution of (2.2) satisfies the polynomial decay
1 2
E(t) < WHUOHD(A)» vt > 0. (2.58)

Proof. For s € R and F = (y1,21,61)" € H, let Up = (y,2,6)" = (is] — A)"'F. Then
proceeding as in Proposition 2.2.1 but replacing A by is in the equation (2.13), we obtain

ais(y,0) = Lp(p),YVo e V={yc H'(Q):y =0 on 'y}, (2.59)

where the expressions of ay and L are respectively given by the identities (2.14) and (2.15).
For ¢ =y, we find

/—s@gjdm%—/ Vngjdm+/ is((isI — B)~*C, C)yoyoids (2.60)
Q Q To
— /(z1 + isyr)ydr + / ((isI — B)"YCrouyr + 61), C) Yoyds.

Q o

Taking the imaginary part of (2.60), we get

/ sR((isI—-B)~1C, C) |yoy|?ds = (/ (z1 +isy1)ydx +/ ((isI — B) N (Cyoy1 + 61), C) 7ggjds) .
Fo Q l_‘0

(2.61)
Taking the modulus of (2.61) and using Cauchy-Schwarz’s inequality, we obtain

Is| [ R((isI — B)'C,C)|yy|*ds < /](z1+isy1)y]dx+/ |((isI — B)™"(Cyoy1 + 61), C) 70| ds
Ty Q Ty

1

S MFlyllez) + sl Fllallyl 2@ + mIIFHHIIyIILZ(Foy
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2 The multidimensional wave equation with generalized acoustic boundary conditions

By (2.57) we deduce that for |s| large enough,

1

1
‘S‘/F W!%y\zds S [slF Nyl 2@ + QHFHHHZ’J”LQ(FO)y
0

thus
Iyll72r) S ISP IF Iyl 20 + 15221 F 21yl L2 ro) (2.62)

hence by Young’s inequality
9l 7200 S 1512 IF Iadllyll L2y + 1512222 F Il (2.63)

For every s € R and for every f € L?(Q) let us show that there exists a solution ¢; € H*(Q2) of
the problem

—(sz—i—A)gof =f ,zeQ,t>0,

pr(z,t) =0 ;v €T, >0, (2.64)

aaiyf(x,t) = —ispy ,x €lo,t >0,

and satisfying

{|S|||90f||L2(Q)+H@f”Hl(Q) S Il @) (2.65)
’3’|’§0f”L2(F0) S HfHL‘Z(Q)-

Indeed, by Huang-Priiss Theorem (see [23,26,43|) the exponential stability of system (2.55)
implies that there exists M > 0 such that

[(isT — A) gy < M < 400, (2.66)

for all s € R. Due to (2.66) we have

Vf e LQ(Q), Vs € R, Jluy = <z;> € D(A) s.t. (is] — A)uy = (;),)

and such that
luslle < M| fllr20)-

We deduce that

{isgof—wf =0
’iST/}f—AgOf = f

which gives ¢¢ = isps and (s*> + A)ps = —f. Moreover,

lerllar) + [slllefllz) S 1 fll2 @)

and the first estimate of (2.65) hold. To obtain the third inequality we write

/(—82<Pf—f)<ﬁfd$+/ ’VSOf‘de—/ASOf@fdx"‘/ \VW\Qde—/ Onspy@yds,
Q Q Q Q To
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2 The multidimensional wave equation with generalized acoustic boundary conditions

hence

/F Ontpypyds = /Q(!VSOHQ — *|ps|? — f@y)da. (2.67)
0

As 9y = ispy and aaiyf = —1)y , then taking the imaginary part of (2.67) we get

111720
sl [ lerPds =18 [ Fopdal < 17l leslliae S =,
To Q |s|
which proves the second estimate of (2.65).
We first show that
191l 2 () + 191l 200y S 18121 [l (2.68)

By replacing ¢ by ¢ in the identity (2.13) and integrating by parts we get
2 _ 0py (0 ~1 _
—s"yppdr — | yAppdx + ya—ds + is ((zsI — B)"C, C’) Yoy Yo sds.
Q Q To v T'o
= / (21 +isy1)@rda +/ ((is[ - B)_I(C"yoyl +d1), C) Yopyds.
Q Lo
We deduce that
/ yfdr = / isyppdx + / (21 +isy1)@pdx +/ ((is[ — B)fl(C’YOyl + 51),0) Yoprds
Q Fo Q FD
—/ is ((isI — B)™'C, C) yoy 0@ £ds(2.69)
To
Take f =y in (2.69) to obtain

/Q ]y|2da: = / isypydr + /Q(Zl + isy1)pydx +/ ((isI — B)*l(C’yoyl +01), C) YoPyds
Fo 1_‘O

—/ 18 ((isI — B)flc, C’) VY0 Pyds.
o
Using Cauchy-Schwarz inequality together with (2.65), we obtain for |s| large enough

| 1wda < ol Wolzzo) + 1P alvlzzcoy
By Young’s inequality, we deduce that

Iy S Ivll3ay) + I1F13 (2.70)

Using this estimate in (2.63), we get

9172 (o)) S 1P IUE eyl 2oy + IF ll20) + [P~ 2 I F),

and again by Young’s inequality, we obtain

19l Z2roy) S 18I IF -
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2 The multidimensional wave equation with generalized acoustic boundary conditions

By (2.70) we deduce that
1922y S 151 FIE,.
which proves (2.68). It follows that
2122y = lisy — w112y < /21 FIE,.
Moreover, by the expression (2.11) and (2.68), we get

r

<
T s

161l (z2(ro)) 1F Nl + Islllyll z2rg)) < IsIIF [l

We further have
[ IVulds < Isp
Q

Indeed, by (2.60), we have
/]Vy|2d:c = /szly\zdx—/ is((is[—B)_lc’,C)\’ygy\zds—i-/(zl—l—isyl)gdx
Q Q T'o Q
—|—/ ((isI = B)™1(Cyoy1 + 61), C) Yoyds
1)
1
S 1sPIyliZa o) + IulZ2g) + sHIE eyl 2y + HHFH%HZJHLQ(FO)
S IsPPPEIG, + [sPI G, + |sPPEHEG, + |sPPH 1

Hence we have shown that
1Uel S IsIPHH|F I,

for |s| large enough. This means that
I(is = A)7H = O(|s[*1), s — oo,

and it follows by Theorem 2.6.1 that

1
1T S 57575 VolIpy

which proves (2.58). m

Proposition 2.6.3 Suppose as in Proposition 2.6.2 that there exist p > 0 and « > 0 such that
for s € R with |s| large enough, (2.57) holds and that iR C p(A). Assume moreover that the
energy of system (2.55) is polynomially stable with

e A7 = 0@t~ Y*), t = oo,
for some o > 0. Then the energy of the solution of (2.2) satisfies a polynomial decay

1
E(t) S m“UO”%M); vt > 0. (2.71)
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Proof. Proceeding as in the proof of Proposition 2.6.2, for F' € ‘H and Up € D(.A) defined
therein we obtain (2.60), (2.61), (2.62), and (2.63). In addition, there exists ¢y € V satisfying
(2.64) and

{ slllerllz) + lerlm@ S |5’Z\|f||L2(Q)7 (2.72)
[slllefllrzqry) S szl fllez@)-
Indeed, since the energy of system (2.55) is polynomially stable then using Theorem 2.6.1,
Vf e L*(Q), Vs € R, Iy = (¢5,97)" € D(A) s.t. (is] — A)yuyp = (0, f)"
with
lurlle < Mls|®l fll 20
for some M > 0. As before, we deduce that
{ Il 5 bt o)
yllzerey S 1s1PPls|2 | Fll%

Replacing f = y in (2.69) and using the estimates (2.72) together with Young’s inequality, we
obtain
i3y S I8l (I9132cq) + 151N FIZ ) - (2.74)
Then by (2.63), we get
1912y S [N I3,
Due to (2.74),
1yl 720y S 15120 F I3,
and thus
2122y = llisy — y1 22y < |52+ Y3,
By the expression (2.11) and (2.73), we get

1

191l 2oy S H(HF”H +Isllyll2rg)) S 1852 |1 F |3

Using (2.60) and (2.73), we have
[ 1vuRds S s,

Henceforth,
I(is = A)7H = O(|s[** ), s = oo,

and the estimate (2.71) follows from Theorem 2.6.1. m
Before going on, let us give sufficient conditions on B and C' that guarantee that (2.57) holds.

Proposition 2.6.4 Suppose that B, C' and M have constant scalar entries. Let B* be the adjoint

of B with respect to (-,-)cn, Bo = B — R and R = B%B*. Moreover, assume that

m = min{p € N: P(B{C) # 0} (2.75)

exists, with P the projection from C" into (ker R)-. Then there evists a > 0 such that for |s|

large enough, we have
o

. -1
R((isI — B)""C,C) > S
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2 The multidimensional wave equation with generalized acoustic boundary conditions

Proof. Indeed, we have RB!C = 0 for all | < m and RB™C = RB'C. Then, since R is
self-adjoint and RC' = RPC', we may write

o0

B’ B ome1 B™ ma1 B™ o
RZ VSO (=) 0) = —((=i)™ S O R(=i) S 0) 4 O(fs 7 )
1=0
PB" PB["
:_(( )m-‘rl Smflc ( )m-l—lR mfl C)+O(|8’ 2m+3))‘
As
R((isI — B)—lc C) = §R((is] - B)7'C, (isl — B)(z's] -B)'0)
. B B!
—(R(isI — B)™C, (isI — B)~ RZ j+15]+1 Z L o )
we get

(RP(Bf'C), P(Bi'C))

$2(m+1) O([s|~Em+)).

R((isI — B)'C,C) = —

But —R defines a norm on (kerR)=*, thus —(RP(B;*C), P(BF*C)) = |P(BF*O)||?> > 0. =

Remark 2.6.5 The semigroup et is exponentially stable for domains with smooth boundary (of
class C*) satisfying the geometric control condition (G.C.C)(see [12]), as well as for domains
of class C? satisfying the vector field assumptions described in [27] (see (i), (ii),(iii) of Theorem
1in [27]). Moreover, in Theorem 1.2 of [28] the authors prove the exponential stability of et
for smooth domains under weaker geometric conditions than in [27] (without (ii) of Theorem 1).

Remark 2.6.6 Consider the system (2.55) on the square [0,1] x [0,1] and suppose that I'y =

{1} x [0,1]. Then similarly as in [{0] we deduce that et is polynomially stable with |eMUp||> <

%HU@H%(A), for all Uy € D(A). Then if the assumptions of Proposition 2.6.3 are satisfied, then
1

leATol? St 78 [ Uoll3 .y, for all Ug € D(A).

2.7 Dissipation on the whole boundary
Here we assume that I'y = (). Thus I' = T'g = 02 and system (2.2) becomes

ytt(xat)_Ay(x7t) =0 7$€§27t>07
W (z,t) = (8(x,1),0) ,x €Ty, t>0, (2.76)
Ot(x,t) = Bé(z,t) — Cyp(x,t) ,xz €T, t>0.

Let V = H(), then H is given by
H =V x L*(Q) x (L*(T0))",

and is now endowed with the following inner product

((yaZ,é)a(ylaZh(sl))H:/nyldx-i-/QVijgldx—l—/

221d$+/ (6,61)dx.
Q I'o
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2 The multidimensional wave equation with generalized acoustic boundary conditions

We define the operator (A, D(A)) on H as in chapter 1,
AU = (2,Ay, B6 — Cypz) ", for U = (y,2,0)" € D(A),

where D(A) = {U € H : Ay € L*(Q),z € V, gy = CTM¢é on I'y}. Remark that A is not

dissipative with respect to the norm defined on H. Indeed,

ROAU, Uy = [ R(BS,6)snds + B / sjda.
To Q

To overcome this difficulty we need further assumptions on B and C.
We actually suppose that B is invertible on the whole boundary and consider the following cases:

cither [, (=B)~'C,C)ds # 0 or [, ((=B)~'C,C)ds = 0.
Before going on, recall that Lg deﬁned by (2.15) with A = 0 is given by

Lp(p) = / zpdx —i—/ ((—B)_l(Cy + 6),0) Yopds, Vo € Hl(Q),
Q T
when F = (y,2,8)" € H. For shortness, we further set

Li(F) = Lp(1).

Note that
Li(AU) =0,VU € D(A).

2.7.1 The first case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole
boundary and fF(BflC, C')ds is nonzero. Then we introduce the following subspace H of H:

H={FecH:L(F)=0},
endowed with the inner product (2.4), and the operator (A, D(A)) defined by
D(A) =HND(A), AU = AU, YU € D(A). (2.77)
Proposition 2.7.1 The operator A is m-dissipative.

Proof. The dissipativity of A directly follows from the property (2.9). Proceeding as in the
proof of Proposition 2.2.1, we apply Lax-Milgram lemma to get the existence of a unique solution
y € HY(Q) of (2.13), and deduce the surjectivity of A\l — A from D(A) onto H for all A > 0.
Moreover, we can easily check that the preimage U = (y, 2, 8T of F = (y1,21,01)" € H by
A — Ais also in #, thus proving that AI — A is surjective from D(A) onto H. m

Proposition 2.7.2 The operator A is one-to-one and onto.

Proof. We first show that 0 € o4(A ) Suppose that A(y,z T = (2,Ay,B5 — C2)" =0 for
some (y,2,8)7 € D(A), then z = 0 and as B is invertible § = 0 thus d,y = 0. But Ay = 0
in €, then multiplying by y and integrating by parts we deduce that y is constant in ). Since

o8



2 The multidimensional wave equation with generalized acoustic boundary conditions

(y,2,0)T € H, we get fFo (B~1C, C)yds = 0 and we conclude that y = 0.

Let us now show that A is surjective from D(A) onto H. Let F = (y1,21,61)" € H. Then F
satisfies Lp(1) = 0 and it follows that for all » € H*(Q)/C the expression Lr(¢) = Lr(p), with
@ € ¢ is a well defined linear bounded form on the quotient space H'(€Q)/C endowed with the
norm [|¢|| = ||Vel|12(q). We also define the form a on H'(€2)/Cx H'(Q)/C by a(y,¢) = ao(y, ),
y € 19,90 € ¢. Moreover, a being coercive on H'(Q)/C, Lax-Milgram lemma then implies the
existence of a unique solution ¢ € H(£2)/C of

a(y,¢) = Lr(¢), Vo € H'(Q)/C.

Choose any y € 9, then it satisfies
/ VyVgdr = / z1@dx +/ (=B) "1 (Cy1 + 61),C) gds,Vp € H'(Q). (2.78)
Q Q To

In particular, for ¢ € D(Q) we get —Ay = 21 € L*(Q). Moreover, by replacing 21 by —Ay in
(2.78), we deduce that d,y = ((=B) "' (Cy1+61),C). Set 6 = B~1(Cy1401),2 = y1,§ = —y+5,
with g € C fixed below. Thus B — C'Z = §; and

and

9y _ 0y _
o v
Since [.(B7'C,C)ds # 0, we may choose

= fr(BllC C)ds (/Q yrdz + /F (Bil (Cy - Bil(Cy1 + (51)) ,C) d3>

to get
/ Zdx + /((—B)l(cg +6),C)ds = 0.
Q r

Henceforth, U = (§,%,6)T € D(A) and AU = F. =
Corollary 2.7.3 0 € 04(A) with multiplicity 1, its associated eigenvector is (1,0,0)7.

Proof. Clearly A(y,z,6)" = (0,0,0)" if and only if y is constant in ©, z = 0 and § = 0, hence
0 € 04(A) with a geometric multiplicity equal to 1. As

L1((1,0,0)7) = — /F(B—IC, C)ds # 0,

(1,0,0)" does not belong to the range of A and the algebraic multiplicity of 0 is also equal to 1.
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2 The multidimensional wave equation with generalized acoustic boundary conditions

2.7.2 The second case

Throughout the remainder of this subsection, B is assumed to be invertible on the whole
boundary and fFo (B~1C,C)ds = 0. For simplicity we further assume that B and C have real

entries. In this setting as (B~1C,C) < 0, we deduce that
(B7'C,C)=0onT.

Inspired by Example 1 below, we also suppose that

Q| — /F(B2C, C)ds # 0.

Under these assumptions, we see that Lp and L; defined before are reduced to

Lr(e) = [ zdat [ (=B)716,C) ngds. e € (),

/zda:—/ 150

for F' = (y,z,0) € H. We also introduce the functional

/ydm—/ 2(Cyoy +6),0) ds,

and

when F' = (y,z,6) € H. Note that
Ly(AU) = L1(U),VU € D(A),
and that our assumption (2.80) implies that Lo((1,0,0)") # 0.

Now we introduce the following subspace H of H:

H={U€eH:L(U)=Ly(U) =0},

still endowed with the inner product (2.4) and the operator (A, D(A)) defined by (2.77).

Proposition 2.7.4 The operator A is m-dissipative.

(2.79)

(2.80)

Proof. We proceed using the same proof as that of Proposition 2.7.1. Noting in addition that

Ly(F) =0 and Li(U) = 0 imply that La(U) = 0, the proof is thus complete. m
Proposition 2.7.5 The operator A is one-to-one and onto.

Proof. Suppose that A(y, 2,6)" = (2,Ay,B5 — Cz)" = 0 for some (y,z,6)"

9)
as before, we get (y,2,6)" c(
that ¢ = 0. Therefore, 0 & Ud(A

60

€~D(J2(). Then,

1,0,0) for some constant c. Since (y,z,6)" € H, we conclude
)-



2 The multidimensional wave equation with generalized acoustic boundary conditions

Let us now show that A is surjective from D(.Z) onto H. Let F = (y1,21,01)" € H. Then
F satisfies Lp(1) = 0 and as before there exists a solution y € H(Q) of (2.78). By setting
§ =B YCy1 +61), Z=y1,J = —y + B, with B € C fixed below, we find that

A(jj,%,0) = F.

Furthermore, the assumption Ly(F') = 0 guarantees that L;(g, 2, 5) = 0, while (3 is fixed in such
a way that

La((§.2.0)") = La((—y,2,6) ") + BLa((1,0,0) ") = 0.

Corollary 2.7.6 0 € 04(A) with geometric multiplicity 1 and algebraic multiplicity 2, its asso-
ciated eigenvector is (1,0,0)T and its generalized eigenvector is (0,1, B~1C)T.

Proof. The conclusion follows from the fact that
A(0,1,B7tC)" = (1,0,0) ",

and that
L1((0,1,B71C)T) = Ly((1,0,0)7) # 0.

Remark 2.7.7 If (2.80) does not hold, then it equivalently means that L1((0,1, B~1C)T) =0,
and in that case, we directly deduce that the algebraic multiplicity of 0 is greater than 3. For
shortness, we let the remaining analysis to the reader.

2.7.3 General considerations

From now on, we suppose that we are either in the first case or in the second one.

Proposition 2.7.8 Suppose that the assumptions (A1), (Az), (As) and (A4) of Proposition 2.4.2
hold. Then c4(A) NiR* = (. Consequently, oq4(A) NiR* = ().

Proof. Same proof as Proposition 2.4.2. =
Proposition 2.7.9 If A\ & X, then A — A is a Fredholm operator of index zero.
Proof. Same proof as that of point (ii) of Theorem 2.3.1 but replacing V by H'(Q). =

Remark 2.7.10 If A € X, then A — A is singular. Indeed, since A — A is singular then by
Theorem 2.3.1, there exists a sequence (Uy)nen+ in D(A) satisfying ||Up|ln =1 and

(M — A)U,, — 0, as n — 0.

L1(Un)

T,0.0)7Y) where U, = (yn,zn,5n)T. We now construct the sequence

In the first case, let oy =
(ﬁn)neN* by

_ 1

Un — Un — Oy, 0

0
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In the second case, let
Ll(Un)

Ll(((), 1, B_IC)T)

Bn —
and

Ly(Uyp) — BuLa2((0,1, B71C)T)
LQ((L 07 O)T)

Ay =

In this case, we introduce the sequence (Uy)nen+ defined by

N 1 0
Uy,=Up—an, |0]| =5 1
0 B~ lC

Then (ﬁn)n C D(A) and ay, — 0,5, — 0 as n — oo due to Lemma 3.3 and the property

(2.9). Consequently, (\ — A)U, — 0 and HﬁnHﬁ — 1. Therefore, taking V,, = ||[7UT| , we obtain
nll

(Va)n C D(A) satisfying |Vplz =1 and
(M - AV, =0, as n — 0.

Proposition 2.7.11 If (A1) to (A4) of Proposition 2.4.2 hold and if ¥ N iR is countable, then
the Cy-semigroup associated with A is strongly stable.

Proof. Due to Proposition 2.7.2 and Proposition 2.7.5, we have 0 € p(.A). Now, let i\ € C\ 2
with A nonzero, then due to Proposition 2.7.8 we have i\ € o4(A). We deduce by Proposition
2.7.9 that i\ € p(A). Using the same proof of the invertibility of A\l — A where A\ > 0 of

Proposition 2.7.1 we prove the invertibility of i\ — A | and so i\ € p(A), hence

C\ £ NiR* C p(A) NiR*

and thus

o(A) NiR* C ¥ NiR*.

|
The next corollary follows directly from the previous Proposition.

Corollary 2.7.12 Let the assumptions of Proposition 2.4.2 be satisfied. Suppose moreover that
Y NiR* = (. Then iR* C p(A)

We define the operator (A, D(A)) on H := H'(Q) x L?(Q2) as in the previous section. Moreover,

we define the following subspace H of H

H:{UEH:/zda:+/yd3:0}
Q r

endowed with the inner product

((y7z)7(y1;21))g_/VyVy1dx+/zzlda?,
Q Q
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and the operator (A, D(A)) defined by
D(A) = HND(A), AU = AU, VU € D(A).
We further define the following initial value problem on

U; = AU, U(0) = Up. (2.81)

Proposition 2.7.13 Assume that iR C p(A) and that the energy of system (2.81) is exponen-
tially stable. Suppose moreover that there exist p > 0 and o > 0 such that for s € R with |s|

large enough we have

. _ «
R((isI — B)~'C,C) > FE3

then the energy of the solution of Uy = AU, U(0) = Uy € D(j), satisfies a polynomial decay

1

2

_ L d . o
Proof. For f € L?(f2), we have < |BQJ“[Q / x) € H. Then there exists (Z()) € D(A) satisfying
1

(M — A) <Z<1]> - <_81§2|J{Q fda:>

and 1
A oA NT T
i)y < (= | £ )l
Take )
=1 _— d =1 .
ug U0+i3|89|/9f T up = Uy
Then

- (2)-(3)

Setting ¢ = up, we get (2.65). Following the same proof of Proposition 2.6.2 we obtain the

same estimates on the resolvent in the space H. We conclude by Theorem 2.6.1 as iR C p(./T)
[

Remark 2.7.14 The semigroup eAt s exponentially stable if the boundary I is smooth enough as
it then satisfies the geometric control condition (G.C.C)(see [12]), orif Q) is of class C? satisfying
the vector field assumptions described in [27] (more precisely (ii) and (iii) of Theorem 1 in [27]).

Proposition 2.7.13 finally allows to obtain the asymptotic behavior of the solution of (2.76).
To state properly the result, we again need to distinguish between the first and the second case.

Proposition 2.7.15 Let the assumptions of Proposition 2.7.13 be satisfied, then the following
statements hold:
1. In the setting of case 1, the solution U = (y,y:,0)" of (2.76) with Uy € D(A) satisfies

1

1U(t) = (1,0,0) "5, < WHUOH%(AV
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where
L1(Uy)

T Li((1,0,007)

2. In the setting of case 2, the solution U = (y,y;,6)" of (2.76) with Uy = (yo,y1,00)" € D(A)
satisfies

a

_ 1
|U(t) = (1,0,0)" = B(t, 1, BT'C)T[f3; < WHUOWD(A)’
where
g L1(Uo) and o — Ly(Up) — BL2((0,1,B~1C) 1)
Ll((07 1>B_IC)T) LQ((LOaO)T)

Proof. In the first case, given Uy € D(A) we set
(70 = Uy — Oé(l, 0, O)Tv

with « defined above. The choice of « guarantees that ﬁo belongs to D(ﬂ) Hence applying
Proposition 2.7.13, we see that the solution U of

U, = AU, U(0) = U, (2.83)
satisfies (2.82). The conclusion follows by noticing that
U(t) =U(t) +0a(1,0,0)",

is solution of (2.7),
U= AU, U(0) =Up.

We proceed similarly in the second case, namely we set
Uy = Uy — «(1,0,0)" — (0,1, B~*C) T,

a and 3 being chosen such that L1 (Uy) = La(Up) = 0. As before the solution U of (2.83) satisfies
(2.82), and the conclusion follows by noticing that

Ut) =U(t) +«(1,0,0)" + (¢, 1,B~'C) T,

is solution of (2.7). m

2.8 Polynomial stability: the multiplier method and the energy
method

In this section we assume that
IoNTy =¢, and meas I'; #0,
and that there exists a point g € R"™ such that
' ={z eT|(x — zp).v <0},

g ={x eT|(x — z0).v >a >0},
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for some constant a > 0, where v = v(z) denotes the unit outward normal vector at x € T.

We further suppose that B and C have constant and real entries (for variable entries, see

Remark 2.8.10). Under these assumptions we are able to give a better energy decay rate

than that given in the previous section once imposing certain algebraic conditions on B and

C. Remark also that those geometrical conditions on the boundary exclude simply connected

domains. Moreover, we set q(x) = (x —xg), for all z € Q and denote by Ry = ||¢||co = sup||q(z)]|.
e

We first prove a result from interpolation theory which later will allow us to deduce from the
polynomial decay for certain regular initial data a polynomial decay of energy for less regular

initial data (see also Proposition 3.1 in [14]).

Proposition 2.8.1 Let (A, D(A)) be a m-dissipative generator of a Cy-semigroup of contractions

on H, with A~ bounded in a Hilbert space H with norm || -||, let Uy € D(A) and m be a positive
integer. Suppose that ||eA*Vgl|? < %ZHAJVDHQ for all Vo € D(A™), then
=0
1
le*Tol* < — (ITl* + 1AV 1) (2.84)

m

Proof. For m = 1, the result is clear.
For m > 1, applying Theorem 2.6 of [33] we get

||eAtH,C([H,D(Am)]9;H)) < ||€At||2zg)||6At||%(D(AM);H)), Vo € (0, 1)

Due to Corollary 4.30 of [33], we have

[H,D(A™)]1 = D(A).

3=

By the assumptions we have ||eAt||£(D(Am);H)) < £ Moreover, et

: is a family of contractions
3

~+

on H, thus |le*’||zz) < 1 and hence

L 1
”eAtH,C(D(A);H) < ||eAt||ZL(D(Am);H)) < t%’

which yields (2.84). =

For j € N and Uy € D(A?), by Remark 2.2.4, for all ¢ > 0, we can define E;(t) = %HBtJU(t)H%{
For Uy € D(A’T!), computing its derivative we obtain

d

S B,(1) = (AD]U,0}U) = / (B&5,006)ds — | 0057 MBoIsds, (2.85)

1) To

that is non positive. Hence this energy is also non increasing.

Proposition 2.8.2 For (yo, z0,90)T € D(A), denote by (y,ys, 0) the solution of system (2.2) and
define Fy(t) by

d—1
Fo(t) = /Q (ytq -Vy + 2yyt> dx,
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where we recall that q(x) = x — xg. Then the derivative of Fy is given by

d 1 1
Ly _ 1 2 N _ 2
a0 = 5 [ w5 [ gvvyas
1
—i—/ C’TMéq‘Vyds—i—/ q-v|Vy|*ds
FO 2 1_‘1
1 d—1
—1—/ q-vlyPds + —— | CTMdoyds.
2 Jr, 2 To
Proof. We have
d d d—1d
SRt = = Vyds + =2 d
5 Fo(t) gi J, vea Vyde+ =g | yde

d—1
= / Yieq - Vydx + / ytq - Vypda + 5 </ Yyred +/ |yt|2d$> .
Q Q Q Q

As yy = Ay, and using Green’s formula we get

/ yuq - Vydr = / Ayq - Vydr = / @Vy - qds — / Vy-V(q-Vy)dx
0 Q r Ov 0

Ay oy o & Ay

~J . . . _ R S

. aVVy qu—l—/rl(Vy v)(Vy - q)ds /QE 91, 0z, g (; wo)awj dx
=1 J=1

1
/ ayVy-qu—F/ |Vy\21/-qu—/ ]Vy|2 — / q-V|Vy\2d:1;.
r, OV r 0 2 Jo

Using Green’s formula and as y; = 0 on I'1, we get

1 1 . 1
/ytq-Vytdac = /q-V|yt|2d:I::—/dlvq|yt2dx—|—/ q-l/\yt|2ds,
Q 2 Ja 2 Ja 2 Jr,

similarly substituting divq by d, we obtain

1 d 1 1
/ ~q-V|Vy|*dx = —/ |Vy|2dx + / q-v|Vylids + / q - v|Vy|?ds. (2.86)
2 2 Jo 2 Jr 2,

Moreover, as y = 0 on I'1, we have

15}
/yyttdx = /yAydx:—/ ]Vy|2d:v+/ lyds.
Q Q Q To ov

Finally, by replacing (2.86) in the expression of fQ yuq - Vydx and summing all the above equal-
ities, we obtain

d d—1 d d d—1 1
—Fy(t) = —_—— = 2d ——1—-— 2de — = . 2d
G0 = (Gr-5) [wkass (5-1-557) [19uPar =5 [ avivyias

0 1
yq.Vyds+/ q.v|Vy|?ds
Ty 8V 2 r

d—1 dy

1 2
- . de + —— | ZZyds.
+2/FO(JV|yt| T+ — . o

_l’_

Just substituting g% = CTMJ, we get the required result. =
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Proposition 2.8.3 Suppose that there exist k > 0,k > 0, a matriz Q € M,(R), and a positive
integer m such that RBIC' =0 for all0 < q <m —2 and

m—1
(CT(BS — Cv))? 161> = > (RB6, B78) — (RB™(B§ — Cv), B™ (B — Cv)) | ,
=1
’ (2.87)
§T(BTQ 4 QB)6 < k(—R6,8) — ki1||6]%, (2.88)

for all 2 € R" x R, where R = B+TB*, B* being the adjoint of B with respect to the defined
inner product (note that (R, 6) = (B9, 9)).

Assume moreover that () satisfies

m—1
(CT(QT+ Q)(BS — Cv))* < k [ > " (RB/6,BI5) — (RB™'(BS — Cv), B" ' (BS — Cv))
7=0

(2.89)
For (yo, 20,00)T € D(A™Y), define
Go(t;y,0) = (5TQ5ds+/ aTdyds,
o Ty
with « = QTC' + QC, and the Lyapunov functional

N2ZE +VNGo(t) + Fo(t),

with N > 0. Then for N large enough, there exists C > 0 (depending on N ) such that

%Lo(t) < _CEy). (2.90)

Proof. Deriving Gy we obtain
d

%GO = / (5tTQ5 + 5TQ5t + aT(Sty + aTéyt)ds
To

As 6; = Bo — C'yt, we deduce that
d

—Go = / (5T(BTQ + QB)S + (™ — CTQ — CTQT)S + aTdyy)ds
dt -

As a=Q7C + QC, we get
d
6o = / (5T(BTQ + QB)S + aTdy)ds. (2.91)
o
By (2.85), (2.91), and the expression of the derivative of Fp, we have

%Lo(t) = / (B6,8)ds + N2Z/ (B&6,0!8)ds + VN [ (6T(BTQ + QB)d + aTéy)ds
o

1 1 1
—/(|yt’2+\Vy|2)dx—/ q.u|Vy|2ds+ CTM5q.Vyds+/ q.u|Vy|2ds
2 Q 2 1"0 2 F1

o

1 d—1
—i—/ q.v|y|*ds + —— CTMoyds.
2 Jr, 2 Jr,
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To deal with the term fFo q.v|y:|*ds, we first compute y; using the condition §; = BS§ — Cy,
on I'g, multiplying by C'T we obtain
= (CTC)"'CTBs — (CTC)~1CTH; on T, (2.92)

Using a trace theorem, equality (2.92) together with Young’s and Poincaré’s inequalities we
deduce that for all €1 > 0,e9 > 0,23 > 0 we have

/ avlyPds < / ¢ v|(CTC)1CTBS — (CTC) - CTS, 2ds (2.93)
Fo F0
< / 2Ry [(CTC)"*(CTBS)? + (CTC)2(C76;)?] ds,
o
N
VN [ aTéyds < 61/ (aTét)2d5+a//|Vy|2d:r, (2.94)
T'o 2 Jr, 2e1 Jo
2
CTMéq.Vyds < / [@(CTM5)2+ROq.U|Vy|2] ds, (2.95)
T To 2 2@52
AL [ ormsyas < 9228 [ (emnsyzas + =2 / Vylde.  (2.96)
2, 2 2 Jn,

Choosing €1, €9, €3 so that we get %fﬂ \Vy|?dz, i fFo q.v|Vy|?ds, and % Jo |Vy|2dx on the right
hand side of the inequalities (2.94), (2.95) and (2.96) respectively, and as %frl q.v|ye|*ds < 0 we
thus deduce that

d

—Lo(t) < N2/ (R4, ) ds+NQZ/ (ROV6,0]0)ds + Ky | N(aT6;)%ds
dt To

VN [ @EQ+QBIs — ; [ (il + VyP)ds

+Ry(CTC) 2 / (CT6;)%ds + Ro(CTC) ™2 / (CTB6)?ds + K / (CTM6)%ds,
1) To

To

J

where Ki, K are positive constants. But 8/§ = B/§ — Z@fyBj*iC, thus forall 1 <j<m-—1
i=1

and for all 1 < i < jwehave 0 < j—i < j—1<m—2and thus RB’"‘C = 0, and for all

2 <1< m we get RB™C' =0 asm—1i < m —2. We deduce that for all 1 <j<m-—1,

(RO}6,070) = (RB’6, B§) and (RO™6,0"6) = (RB™§ — RB™ 1Cy;, B™6 — B™"'Cy,). Hence,

due to assumptions (2.87),(2.88), (2.89) we have,

(CT6)* < k(> _(—R0/5,0{6)+][5]” |, (2.97)
j=1
ST (BTQ+QB)s < k(—R5,6) — k|8, (2.98)
(CTQT+Q)0)* < —k> (RD]5,9]0). (2.99)
j=0

Clearly, we have (CTB§)? + (CTM4)? < ||6]|2. Choosing N large enough we deduce that (2.90)
holds. m
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Remark 2.8.4 Substitute § = Ogn,v = 1 in (2.87) we deduce that (—RB™ 'C,B™~1C) > 0.
Moreover, (2.88) implies that 0 € o(B), otherwise there would exist § # 0 such that B6 = 0 and
thus (2.88) gives

0 < —k1||0]|* <0,

which is a contradiction.
Remark 2.8.5 Define

BTCCTB —BTCCTC M - (B)YTMRB’ (B™)TMRC,,
Frp=— ( ) + k g< ) (B™)

_CTCCTB (C7C)? C’TlMRBm P ’
m —Ym m

)

TaaT _BTaaTl - (B)YTMRB’ (B™)TMRC,,
Fk:_<BaaB BaaC> 2 Z( ) ( )

—CTaa™B  (CTa)? j=0 '
CLMRB™ —CHLMRCy,

F¥M — _kMR — kM — (B'Q + QB),

where Cy, = B™1C. The assumptions of Proposition 2.8.3 can be restated as:
there exist k > 0,k1 > 0 and Q such that F, I*—’l’,yf,FQk’k1 are positive definite matrices.

Proposition 2.8.6 For N large enough, there exist Co > 0 and Cy > 0 such that

m m

Co > Ej(t) < Lo(t) < Cy Y Ej(t). (2.100)

j=0 Jj=0
Proof. With the convention, ZE]' (t) =0 if m = 1, we have
j=2
Lo(t) = N*Y E;(t) =:«NQ/QGVyF4-WA2+|VyA2+|%t%d$+=N2/C(HMP-¥H@|%dS
Jj=2 0
1 d—1
+N2 / (0TQJ6 + aTdy)ds + / (y:q.Vy + Tyyt)d:c.
T'o Q

Hence, by Cauchy-Schwarz’s and Poincaré’s inequalities and a trace theorem, we get

m

Lo(t) - N*S Bj(f) < N? (/Q (9ol + Py [ s+ [ (9 + e+ uétn?ds)
Fo F0

j=2

K 2 5 2 2
Y R M e L
r, 1<ij<n Ty 2

d—1 >+ |y
+ 5 /('yt| 5 vl >dm+/ (!yt!2+R8|Vy\2) dz.
Q Q
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m

Lo(t) = NY E;(t) > N*( [ (Vo> + [weP)dz + [ |61Pds + | (IVyel® + |yul)dz + [ |6/ ds
Q To Q o

Jj=2

1<i,j<n

1 2 1o af? 2 1y 2
—Nz nK3 max |g;;|||0]"ds — N2 K3—— 10]|*ds — N2 — [ |Vy|“dz
To ’ 2 Jr, 2 Ja

d—1 24+ 0, Vyl?
_ 5 /<|yt| 2’7‘ y| )dl’—/ (\ytIQ—i—R(Q)!VyIQ) dl‘,
Q Q

where K3 is a positive constant independent of V. For N chosen large enough, this right-hand
side dominates Ey(t) + E1(t), and the conclusion follows. m

Theorem 2.8.7 Let Uy € D(A™). Under the assumptions of Proposition 2.8.3, we get
1 m
Eo(t) < EZEj(O). (2.101)
7=0
Proof. Let Uy € D(A™1). Integrating the inequality (2.90) between 0 and t > 0, we get

/Ot Eo(r)dr < —/Ot c—l%Lode = 01 (Lo(0) — Lo (1))

IN

m
07101 Z Ej(O),
j=0
this last estimate following from (2.100). But 4 (tEy(t)) = Eo(t)+t2% Ey(t) < Ey(t) and therefore

tE(t) = /0 B 4y < /0 () < 00 Y B(0),
=0

as required.
By a density argument we deduce that (2.101) holds for all Uy € D(A™). =

Corollary 2.8.8 Let Uy € D(A). Under the assumptions of Proposition 2.8.3, we have

1
le**UollF, < — Vol D a- (2.102)

m

m
Proof. Due to Theorem 2.8.7 we have E(t) < %ZE](O) By Remark 2.2.2 and Remark 2.8.4,
j=0

A has a bounded inverse, thus applying Proposition 2.8.1 the result follows. m

Proposition 2.8.9 Consider the system (2.2) satisfying the assumptions of Proposition 2.8.3.
For all Uy € H, the energy of the solution of the system (2.2) decays asymptotically to zero, i.e.,

E(t) — 0, as t— oo.

Proof. Let ¢ > 0 be given. Due to the density of D(A) in H, there exists U5 € D(A) such that
|Us — Uo|| < §. But (e);~0 is a contraction semigroup on H, so [eA(Us — Up)|| < §. Since
Corollary 2.8.8 yields that eAtUg converges to zero as t tends to infinity, there exists 7. > 0 such
that for all ¢ > T, we have [|e'Us|[3 < § and hence ||e'Uplly < 5 + [[eAU§|ln < e, for all
t>T.. m
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Remark 2.8.10 If we suppose that B € C%1(Ty, M, (R)) and C € C%}(Ty,R™) with the as-
sumptions of Proposition 2.8.3 assumed to be valid for all x € Ty (with constants k > 0,k; > 0
independent of x) with Q € C%Y(T'g, M, (R)), then the results of Propositions 2.8.3, 2.8.7, and
2.8.9 are still valid (proved with the same arguments).

2.9 Examples

In this section, we illustrate our general framework by checking the assumptions of the fre-
quency domain approach and that of the multiplier method for some particular examples.
2.9.1 Example 1: Acoustic boundary conditions

Let Q be a domain of R? with a boundary I' divided as in the introduction. The system
considered by Beale [16]| (with 'y = () and Rivera-Qin in [38] with ¢ = 1 is the following one:

ytt(mat)_Ay(xvt):O ,I‘EQ,I(J>0,
y(z,t) =0 ,oxel,t>0,
%(xvt):nt($at) ,x €lg,t >0,

mn(x,t) + dnge(x,t) + kn(z, t) + pye(x,t) =0, ,x€To,t >0,

where p is a positive constant and m, d, k are positive and sufficiently smooth functions on I'y.

Let us set mg = ;r&r(l)m(m),ml = ;réz%)ém(af), do = gélrréd(w) and dy = gg)oid(x)

We readily check that this system can be rewritten in the form of system (2.2) with 6 = (1, 7:) "

and
B(z) = (_051 _12) M(z) = (g %) R(x) = (8 _07%) Cla) = (2) €Ty,

For all € Ty, the matrix B(z) is Hurwitz and thus ¥ NiR = (). Hence, the assumptions
(A2), (As) and (Ay) of Proposition 2.4.2 hold. Moreover, we can easily check (A;) and we then
deduce by the proof of Proposition 2.4.3 that o(A) NiR = () if I'; is non empty. In addition, the
inequality (2.57) of Proposition 2.6.2 is satisfied for p = 1. Therefore, if I'; is non empty and if

el is exponentially stable (see Remark 2.6.5), we deduce by Proposition 2.6.2 that

1
E(t) < W”U0||2D(A)7 vt > 0.

A similar result holds if e is only polynomially stable, in particular in the setting of Remark
2.6.6, we will get

|~

E(t) < —|Uollp 4 Vt > 0.

(SN

t

On the other hand if I'; is empty, since B is invertible and (B~'C, ) = 0, we are then in the

second case of section 2.7 (subsection 2.7.2) as we easily check that the assumptions (2.79) and

(2.80) are satisfied. Therefore, if e is exponentially stable (see Remark 2.6.5), we deduce by
Proposition 2.7.15 that

1

T T P T 2
H(y7yt7777nt) - a(1707070) - B(ul?_%vo) Hﬁ SJ WHUOHD(A)? vt > 07
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where a and § are two constants depending on Uy.

If we want to apply the multiplier method of section 2.8, we set

d m
(2 =2 —(°
°=(§ §)=-)
and directly obtain that

—k 0 02
T — _Cv—
BQ+QB_<O m)’B(S v (—k51—d52—pv>7

m

for § = (01,62)T € R? and v € R. It is easy to see that

2 2 2 2
(©T(Bs—Co))? = L (_%1 L ﬂv) < P do <_k51 _ds ﬂv>
m m m m mg do ™y m m m
d k d 2
S = (—61 — —0y — pv> = — (R(BS — Cv), (B§ — Cv)),
m m m
(a7(BS - Cv))’ = p*03 < =2 (~R3,0),
0

that are satisfied for all x € I'g. Hence, the assumptions of Proposition 2.8.3 holds with m =1
independently of x € I'g, thus according to Remark 2.8.10 the energy of the system decays
polynomially for initial datum Uy € D(A) and we thus get the decay rate (2.101) with m =1 as
in [38].

2.9.2 Example 2

Consider the following system

yu(x,t) — Ay(z,t) =0 , v €0 t>0,
y(z,t) =0 ,rel,t>0,
G, 1) = bi6(t) + 04(t) — w(t) ,x e, t>0, (2.103)
Ou(x,t) + bi16s(x,t) + bod(z,t) + boye(z,t) =0 ,x € Iy, t >0,
Ki(t) + bak(t) — ye(x,t) =0 ,x €Ty, t >0,

with bg, b1, by positive constants. Choosing

bl

)
1 b

762 = _57 63 = —K,

we get a system of the form (2.2) with

bp 0 O 0 1 0 0 O 0 1
M={(0 1 0|,B=(-bp by O |, R=|0 -by 0 |],C=10
0 01 0 0 —b 0 0 —b 1
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As in the preceding example, if I'; is non empty, it is easy to check that o(A4) NiR = 0 ((4;)
holds and ¥ N iR = ) as well as (2.57) with p = 1 (by Proposition 2.6.4 as P(C) # 0). Hence if
I'; is non empty and if e4? is exponentially stable, the energy of the solution of (2.103) satisfies

1

E(t) S %HUOHQD(A)a VU € D(A), Vt > 0.

For this example, if I'; is empty, B is also invertible but (B~1C,C) # 0. Therefore, we are in

the first case of section 2.7 (subsection 2.7.1). Hence, if e4? is exponentially stable (see Remark
2.6.5), we deduce by Proposition 2.7.15 that

1

-

H(y - aayt751a62563) ||7‘[ Sj WHUOHQD(_A)? vt > Oa
with « a constant depending on Uj.

Let us now check the assumptions of Proposition 2.8.3 with m = 1 and the choice

by 1

2 2 0
Q=3 0 0

0 00

For any 0 = (81, d2,63)T € R3 and v € R, simple calculations yield

—b() 0 0 52 — v bl
BTQ + QB = 0 1 0),Bi—Cv=|—-bypdy —b1os | ,a=|1
0 0 0 —52(53 — v 0

and
— (R(B& — Cv), (B8 — Cv)) = by (body + b102)? + ba(b203 + v)%.

Moreover, for any § = (d1, d2,3)T € R3 and v € R, we directly check that

(CT(B6 — Cv))? = (62 — 2(bad3 + v) + bad3)?
<05 403 + (203 + v)?,

and

(@T(B§ — Cv))? = (b162 — b1 (v + bad3) + bibads — body — b1da)?
< 0263 + (bob1)262 + b3 (v + bads)? + (body + b1da)>.

Thus, we have
(aT(BS — Cv))? + (CT(BS — C))? < (=R$,6) — (R(BS — Cv), (B§ — Cv)) .

This implies that (2.87) and (2.89) hold. Finally, due to the definition of R and the form of
BTQ + @B, (2.88) is valid with k; = by and k large enough. Hence, the polynomial stability
follows from Theorem 2.8.7 and the energy of the system (2.103) defined on a domain whose
boundary is divided as in section 2.8 satisfies (2.101) with m =1 .
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2.9.3 Example 3

Consider the following system

ytt(wat)_Ay(xat) =0 7$€Qat>07
y(CE,t):O ,$€F17t>0’

2.104
%W (@, t) — bik(a,t) — k(2. 1) = 0 ,x€lg,t>0, ( )

kit (t) + bike(t) + bok(t) + boye(x,t) =0 oz € Lo, t >0,

Set § = (bl”z%, —r)T = (01, 62)7, then our system is nothing but (2.2) with

(b 0\ , [0 1 (0 0 (1
=5 9) o= (G ) 5) o= ()

In this example, if 'y is non empty, we have o(A) N iR = () and (2.57) holds for p = 2
(P(ByC) # 0, see Proposition 2.6.4). Hence, if T'; is non empty and if e is exponentially
stable, then by Proposition 2.6.2 we obtain

1
E(t) < tQ?HUOH%)(A), vt > 0.

If T’y is empty, then we are in the first case of section 2.7 (subsection 2.7.1) as B is invertible
and (B~'C,C) # 0. Therefore, if e is exponentially stable, then we deduce by Proposition
2.7.15 that

1
T 2
1(y — a,ys,01,02,03) " |ln < W”UOHD(A)a vt >0,
with « a constant depending on Ujp.
In the setting of section 2.8, we first note that (2.89) is not valid with m = 1 and thus the

assumptions of Proposition 2.8.3 are not satisfied for m = 1. Let us nevertheless check the
assumptions of Proposition 2.8.3 for m = 2. Indeed, choosing

(1 d)

b 0 by 0y — ¥
T _ —_ —_— —_ =
BQ+QB_<O 1>’(%_2QC_<1>’B(S CU (4051—5152)

Since RC' = 0, we have

we get

— (R(BS — Cv), (B§ — Cv)) = — (RBJ, BS) = by (byd1 + b162)?,
and
— (RB(BS — C), B(B§ — Cv)) = by (bo(ds — v) — by (bod1 + b182))%.
Indeed,

(bo(d2 —0))* 1

(CT(B(5 — CU))2 = (50(52 — U) — bl(bo(ﬁ + b1(52) + b1(bo(51 -+ b152))2

BB
2 2bq
— = (RB(BS — Cv), B(B6 — Cv)) — - (RBS, BS) ,
b102 0
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2 The multidimensional wave equation with generalized acoustic boundary conditions

and

(@T(B§ — Cv))? = (b1(d2 —v) — bgdy — b1d2)? < 2(b3 (69 — v)? + (bod1 + b152)?)

4by 403 2
—— — + —) (RBJ, BY) .

IN

RB(BS§ — Cv), B(B§ — Cv)) — (

Hence, the assumptions of Proposition 2.8.3 holds with m = 2. According to Corollary 2.8.8,
the energy of system (2.104) therefore satisfies the following polynomial estimate

|~

E(t) S = UollD -

D=

t
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3 Stabilization of second order evolution
equations by unbounded dynamic
feedbacks and applications

3.1 Introduction

Let X be a complex Hilbert space with norm and inner product denoted respectively by
|- ||x and < -,- >x x. Let A be a linear unbounded positive self-adjoint operator which is the
Friedrichs extension of the triple (X, V,a), where a is a closed quadratic form with domain V'
dense in X. Note that by definition D(A) (the domain of A) is dense in X and D(A) equipped
with the graph norm is a Hilbert space and the embedding D(A) C X is continuous. Further,
let U be a complex Hilbert space (which will be identified with its dual space) with norm and
inner product respectively denoted by || - || and < -, >y, let C be a Linear operator on U
and let B € L(U, V'), where V' is the dual space of V obtained by means of the inner product
in X. Denote by B* € L(V,U) the adjoint of B. Consider the system

" (t) + ( ) + Bu(t) =0, t €10,400)
()~ Cult) =B =0, telo o) (31)
z(0) = w0, 2'(0) = yo, u(0) = uo,

with p a scalar parameter. By replacing p by 0 and —-C by the identity in system (3.1) we
obtain the system whose stability was studied in [9].

In this chapter we are interested in studying the stability of linear control problems coming
from elasticity which can be written as

2 (t) + Ax(t) + Bu(t) = 0, t € [0, +00)
W' (t) — Cu(t) — B*#'(t) = 0, t e [0,400) (3.2)
2(0) = o, 2'(0) = yo, u(0) = o,

where z : [0, +00) — X is the state of the system, u € L?(0,T;U) is the input function and C
is a m-dissipative operator on U. We denote the differentiation with respect to time by ’.

The aim of this chapter is to give sufficient conditions leading to the uniform or non uniform
stability of the solutions of the corresponding closed loop system.

The second equation of the considered system describes a dynamical control in some models.
Some systems that can be covered by the formulation (3.2) are for example the hybrid systems.

This chapter is organized as follows. In the next section we justify the well-posedness of the

problem then we write C' as a sum of a skew-adjoint operator —C' and a self-adjoint operator
—DD*. The case where the operator D is bounded is studied in section 3.3. Under a regularity
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

assumption we prove in section 3.4 that the observability properties of the undamped problem,
obtained by replacing C' in system (3.2) by —C, imply uniform decay estimates for the damped
problem (3.2). In section 3.5 we state the results concerning the polynomial stability of the
energy. Finally, we present in section 3.6 some examples as applications of the general setting
where we obtain using a variety of methods polynomial or exponential energy decay rates.

3.2 Well-posedness results

In order to study the system (3.2) we use a reduction order argument. First, we introduce the
Hilbert space H =V x X x U equipped with the scalar product

<z, Z>yp=a(z,2)+ <y, §y >xx +<u,t>ypy, Vz,Z2€ H,z=(x,y,u),z = (&,7,0).
Then we consider the unbounded dissipative operator, see Proposition 3.2.1 , denoted by Ay

Aq D(.Ad) — H
z = (z,y,u) — Agz = (y,—Ax — Bu, B*y + C'u),

where

D(Ag) = {(z,y,u) €V x V x D(C), Az + Bu € X}.
So the system (3.2) is formally equivalent to
2 (t) = Aqz(t), 2(0) = 2, (3.3)
where zo = (20, Yo, uo)-

Proposition 3.2.1 The operator Ay is an m-dissipative operator on H and thus it generates a
Cy-semigroup.

Proof.

< Aiz,z >y = aly,x)— < Az + Bu,y >x x + < B*y+ éu,u >UU
a(y,xz) —a(z,y)— < Bu,y >y v + < B*y,u >yu + < Cu,u >yu
a(y,az) - a(x’y)—'_ < Cu,u >UU -

Taking the real part of the above identity we get (3.5) since C is dissipative. Hence Ay is
dissipative.

We would like to show that there exists A > 0 such that A\ — Ay is surjective. Let A > 0 be
given. Clearly, we have A & o(C). For (f,g,h) € H, we look for (z,y,u) € D(Aqg) such that

(M — Aqg)

SRS
I
s

i.e. we are searching forx € V, y € V, u € D(a) satisfying

Ar —y = f
A2z 4+ Az + Bu g+ Af
(M —-C)u—B*y = h.
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

By Lax-Milgram lemma there exists a unique x € V' such that
()\2 + A+ ABO — 6)—13*) 2 =g+ Af+BO—CO) V(B f—h).

In fact, we have A2+ A+ AB(M — C)'B* € L(V,V'), g+ Af + BN —C)"Y (B*f —h) € V'
and

R < (A2 + A+ ABO — 6)—13*) z, x> > (Az,2)yy

V'V
since

R <B()\I — OB, ac> = R <u (M — 6)u>

Vv U,U

Al — R <u éu>UU >0,

)

with u = (A — 6)_1B*$, i.e. the coercivity property is satisfied.

Define R
uw= N —C) (h+B*(\x—f)),

by choosing y = Ax — f we deduce the surjectivity of Al — A. Finally, we conclude that A\ — A
is bijective, for all A > 0.

[

Now, we are able to state the following existence result of problem (3.3).

Proposition 3.2.2 (i) For an initial datum zy € H, there exists a unique solution
z € C([0, 400), H) to system (3.3). Moreover, if zo € D(Ay), then

z € C([0, +00), D(Aq)) N C([0, +00), H). (3.4)

(i1) For each zy € D(Ay), the energy E(t) of the solution z of (3.3), defined by

B(t) = 3 12()

satisfies N
E'(t) =R < Cu(t),u(t) ><0, (3.5)

therefore the energy is non-increasing.
Moreover, we have the following estimate

t
—/ R < Cu(s),u(s) > ds = B(0) — E(t) < %HZOH%, Vt € [0,400), V20 € H.  (3.6)
0

Proof. (7) is a direct consequence of Lumer-Phillips theorem (see [42]).
(ii) For an initial datum in D(Ay) from (3.4), we know that u is of class C! in time, thus we
can derive the energy E(t), and using Propostion 3.2.1 we obtain:

E't)=R<Z,z>ynu=R< Agz,z2 >yn=R< 6’u,u > .

Hence the energy is non-increasing. Finally (3.6) is a direct consequence of (3.5). m
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Assume that C can be written as C = —C — DD* where C is a skew-adjoint operator on U,
D e L(W,(D(C))"), and W is supposed to be a Hilbert subspace of U identified with its dual,
thus D* € L(D(C),W).

We first introduce the conservative system associated with the initial problem (3.2) as

2 (t) + Az1(t) + Buy(t) =0, t € (0,+00)
u)(t) + Cuy(t) — B*xy(t) = 0, t € (0,+00) (3.7)
1'1(0) = l‘o,x/l(O) = y(],’LL1(0) = uop-

Denote by A, the operator obtained by replacing C by —C in the expression A;. Thus A, is
given by
Aczl — (yla —A‘Tl - BulaB*yl - CUl), v21 — (xlaylvul) S D(AC)a

with
D(A.) = {(z1,y1,u1) € V xV x D(C), Az1 + Buy € X}.

The corresponding Cauchy problem can be written as
21 (t) = Aez1(t),21(0) = 29 € D(A,). (3.8)

We can easily check that A. is closed anti-symmetric, maximal dissipative operator whose
opposite —A. is also maximal dissipative, therefore A. is skew-adjoint and generates a unitary

group.
Denote by A, the operator
A (x,y,u) € H (0,0,—DD*u),
it is easy to see that A, is dissipative and A; = A, + A,. Note that the energy satisfies:

E'(t) = =D u(®) [y (3.9)

3.3 Some regularity results

Let T > 0 be fixed and u € L?(0,T;U) be the last component of the solution z of (3.3).
Consider the evolution problem

25(t) = Aeza(t) + Ap2(t), 22(0) = 0, € [0, T, (3.10)
where A, z(t) = —(0,0, DD*u(t)).

Lemma 3.3.1 Suppose that D € L(U). Then problem (3.10) admits a unique solution z(t) =
(z2(t), y2(t), ua(t)) such that
us € L*(0,T;U),

satisfying the following estimate

D usl L2070y < el D*ullL20.107)5 (3.11)

where ¢ is a positive constant.
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Proof. Clearly A,z(t) = —(0,0, DD*u(t)) € C'(0,T;H), and since A. generates a unitary
group ee on H, then (3.10) admits a unique solution given by

t t
z9(t) = / e =) A, 2(s5)ds = / ees) A, z(t — s)ds, vt € [0, T).
0 0

Moreover D € L(U) and

T
lualaorey = | lua(Olfd
OT
< [ et
< / H/ ees A, 2(t — s)ds||3,dt
2
< [ ([ el VAoate = s
0 0
thus
T t )
uoleorey < [ (f 1Aa(s)luds?ar
OT OT
< [ (] 1A s
0T 0T
< /(/ IDD*u(s)|luds)2dt
OT OT T
< [ (] va [ D
0 0
T
< [ TIDIID gt
S T2HDH HD*uHLQ OT;U)'

Consequently, as [|[D*uz|r207r0) < [[D*||lu2llr20,rv), (3.11) holds with the constant
T DD}

3.4 Uniform stability

In this section, we give sufficient and necessary conditions which lead to uniform stability of
system (3.3). R

Recall that the conservative system (3.8) is obtained by replacing C' by —C' in system (3.3)
and that Proposition 3.2.2 still holds. In order to get uniform stability we will need the following
assumptions:

(O) (Observability inequality) There exists a time 7" > 0 and a constant ¢(7") > 0 (which only
depends on T') such that, for all zp € D(A.), the solution z1(t) = (x1(t),y1(t),u1(t)) of (3.8)
satisfies the following observability estimate:

T
/0 1D us(s) I ds > e(T)|z0/15- (3.12)
(H) (Transfer function estimate) Assume that for every A € C; = {\ € C|RX > 0}
Cio2A—=HA) =-D*M+C+AB*(N+A)'B)"'De L(W),

81



3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

is bounded on Cg = {\ € C|RA = 3}, where 3 is a positive constant.

Theorem 3.4.1 Assume that assumption (H) is satisfied or that D € L(U). Then system (5.3)
is exponentially stable, which means that the energy of the system satisfies

E(t) < ce ¥ E(0),Vt € [0, +00), (3.13)

where ¢ and w are two positive constants independent of the initial data zg € D(Ag) if and only
if the inequality (3.12) is satisfied.

By using [36, Theorem 5.1] and |7, Proposition 2.1] we have the following characterization of the
uniform stabily of (3.3) by a frequency criteria (Hautus test).

Corollary 3.4.2 Assume that assumption (H) is satisfied or that D € L(U). Then system (3.3)
is exponentially stable in the energy space if and only if there exists a constant § > 0 such that
for allw € R,z € D(A.) we have

I(iw — A)zl3, + |0 0 D* )z|)7, =6 ||=13,. (3.14)

Proof. (of Theorem 3.4.1). Let z(t) = (x(t),y(t),u(t)) be the solution of (3.3) with initial
datum zg € D(Ag). Consider z;1(t) = (x1(t),y1(t), u1(t)) the solution of (3.8) with initial datum
20 € D(Ay). Let z9(t) = (x2(t), y2(t), ua(t)) be such that z9(t) = 2(t) — 21(t). Then 23 is solution
of (3.10) and due to Lemma 3.3.1 its last component ug satisfies (3.11) if D € £(U). Otherwise,
(3.11) holds true due to assumption (H). Since u = u; + ug, we get

Hzo”%{ S HD*UIH%Q (0,7;W) estimate (3.12)
S ||ID* UHL2 orw) T+ HD*'LLQH%Q(O’T;W) (triangle inequality)
<

HD*UHLQ (0,T5W) (estimate (3.11)).
Indeed xo, uo satisfies the system

xh(t) + Axo(t) + BUQ( ) =0, t € (0,400)
ub(t) + Cus(t) — B*ah(t) = —DD*u(t), t € (0,+00) (3.15)
5(0

x2(0) = 0,25(0) = O UQ(O) =0.
Extend D*u by zero on R\ [0,7T]. Since the system (3.15) is reversible by time we solve the
system on R. We obtain a function z € C(R; V)N CY(R; V)N L?(R; V') which is null for all ¢ < 0.
Let Z2(\) and ug(A), where A = v +in, R(A) = > 0 and 1 € R, be the respective Laplace
transforms of z9 and us with respect to t. Then Zo and us satisfy

{ N2T2(N) + AT2(\) + Biia(A) = 0,

Nia(A) + Clia(A) = B*AZs(\) = —=DD*G()). (3.16)

Since A% + A is invertible (Lax-Milgram lemma), we deduce from the first equation of the system
(3.16) that
Ty = —(\* + A)~! Bu.

Substituting Z5 in the second equation of system (3.16), we get

(M +C +AB*(\* + A)"'B)uy = —DD*4.
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Noting that the invertibility of A\ + C + AB*(\? + A)~1B follows from the invertibility of
M — A, we obtain
D*ly = —[D*(M[ + C +AB*(\* + A)"'B)"'D|D*u

and by section 3.3 or assumption (H) estimate (3.11) holds. Finally, the inequality, |zo[|7, <
HD*UH%Q(O’T;U), implies that there is a constant ¢;(7") which depends only on 7" such that
E(0) — E(T) > c1(T)E(0).

But it is well known (see for instance [9]) that the previous estimate is equivalent to (3.13). m

3.5 Weaker decay

In the case of non exponential decay in the energy space we give sufficient conditions for
weaker decay properties. The statement of our second result requires some notations.

Let H1,Ho be two Banach spaces such that
D(Ag) C H1 CH C Ha,

where
I-llpeag) ~ I3

and

[H1; Helg =H (3.17)

for a fixed 6 €]0; 1[, where [:;:] denotes the interpolation space (see for instance [51]).

Let G : Ry — R4 be such that G is continuous, invertible, increasing on R4 and suppose

that the function  — ——G(x) is increasing on (0;1).

xrl-0

Theorem 3.5.1 Assume that the function G satisfies the above assumptions and that assumption
(H) is satisfied or that D € L(U). Then the following assertions hold true:

1. If for all non zero zy € D(Ay), the solution z1(t) = (x1(t),y1(t),u1(t)) of (3.8) satisfies the
following observability estimate:

4 [EE:
|10t lds = en)lalbe (12 ). (3.18)
0 [ENE
then we have .
1 0
—1 2
0567 (1)) Tl (3.19)

2. If for all non zero zy € D(Ay), the solution z(t) = (x1(t),y1(t), u1(t)) of (3.8) satisfies the
following observability estimate:

T
/0 I D*ur(s)|3ds > e(T)l|20l12,. (3.20)
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then we have 1

E(t) S ———l20llpia,- (3.21)
(1—|—t)1f9 (Aa)
Proof.

1. Using the same arguments as in the proof of Theroem 3.4.1 we get from (3.18)

T [EE
Vzo € D(Ay), / |D u(s)||2Uds > c(T)Hon%G < B 7;2 .
0

12013

The sequel follows the proof of Theorem 2.4 of 9], therefore we give the outlines below.
Using (3.17) and the interpolation inequality

0
l1zoll < llz0l13,°lIz011%,

we easily check

2—-20
2 9
z Z
leollws ol 2 e ay).

12013, Hon2 2

Consequently, using (3.9) and the fact that the function ¢ — ||2(¢)||% is nonincreasing and
G is increasing we obtain the existence of a constant K; > 0 such that

2—260

(D) < 120 - K =% | EELS

12(0)1l5,;

Applying the same arguments on successive intervals [kT, (k+ 1)T], k = 1,2, ... we obtain
the existence of a constant K9 such that

J=((k+ VD)o

12((k + D)3, < 2(kD)[1F, — K2l 2(KT)[13,G =35 , V2o € D(Aq).
[12(0) |34
2-20
; o (120D N
we set & =G 550 , the previous inequality, the property of G and the fact
12(0) 15,

that ¢ — ||2(T")||3 is nonincreasing then we get

lz((k + DT)[F, Ex
I2(RD)3,  Ekra

En < & — Ko,y

Equivalently, we have

2—260
R TGV
20 99 27929
[zom”@ } 12(0) [l
20
12(0)ll5, ¢ < < & — KoE2
229 k+1 > ¢k — N2CK 1 (3‘22)
1 o [ 12+ D)D)l
2—260 Tgp 2-20
)
[z<<k+1>T>|2{9 ] 12(0)1] 35
2—26
l12(0)1l4,
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1
Combining (3.22) and the fact that the function x — ——G(x) is increasing on (0;1),
210

we get
Epr1 < & — K7y 1.

M
We thus deduce the existence of a constant M > 0 such that & < 1 and we finally

get (3.19).

2. As for 1. the proof is similar to the second assertion of Theorem 2.4 of [9] which is based
on Lemma 5.2 of [8] and is left to the reader.

3.6 Examples

Beam System

We consider the following beam equation:

ug(x,t) +u® (z,t) = 0, 0<z<1,te|0,00)
Ut(t) + 577(0 - ut(17t) =0, O<z<lte [0,00) (3 23)
u(0,t) =u/(0,t) =u"(1,t) =0, te€][0,00) '

u"'(1,t) =n(t)
with the initial conditions
u(z,0) = ug(x), ue(z,0) = u1(z),n(0) = no.
In this case
X =1%0,1),U =C,V = {u e H*0,1) : u(0) = «/(0) = 0},
D(A) = {ue H*0,1) : u(0) = «/(0) = " (1) = 0,u¥ (1) = 0},
a(u,v) = /01 10 Pdz (u,v € V), Au = u® (u € D(A)),
B =61,B"p=¢(1)(p V).

< Bn,po >y y=mnp(l)(neC,peV),

and
C: C-=C
n——=pn
where [ is a postive constant.
Note that C is bounded, so we only need to find the observability inequality in order to

deduce the type of stability of the system. Since B € L(U,V’) then By = n - B1, and since
Bl €V’ and A € L(V,V’) then there exists a unique ug € V such that B1 = Aug. Indeed, it is
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2

easy to check that ug(z) = % — %3. Moreover, C' =0 and D = /3.

Remark that in this case

D(A:) = D(Ag) = {(u,v,n) €V xV x C: Au+ Bn € L*(0,1)},

and
u v
A lv] =|—-Au—Bn|. (3.24)
n B*v

Note that since D(A.) is compactly injected in H, then A, has a compact resolvent and thus
its spectrum is discrete. In addition, since A, is a skew-adjoint real operator, then its spectrum
is constituted of pure imaginary conjugate eigenvalues. Now, let A = iy € o(A.) with U, an
associated eigenvector then A = —iy € o(A.) with Uu an associated eigenvector. Since the
eigenvalues are conjugates , it is sufficient then to study p > 0.

Lemma 3.6.1 The eigenvalues of A. are algebraically simple. Moreover, 0 € o(A:) and for
every A =ip € o(Ae), 1w > 0, p satisfies the following characteristic equation,

F(1) = /R + /R cosh(/R) cos(y/) + sin(y/72) cosh(y/77) — cos(y/) sinh(y/72) = 0. (3.25)

Proof. First it is easy to see that 0 is a simple eigenvalue of A. and that an associated eigenvector
is U = n(—up,0,1)",n e C.
Let A =iy € 0(Ae), 0 > 0, and let U = (u,v,7)" € D(A.) be a nonzero associated eigenvector.
Then U satsifies
Acw,0,m) " = Au,v,m) ',

which is equivalent to
V=AU
B*v = \p (3.26)
—Au — nAug = v = M.

We then deduce that
Au+ nug) = —N2u, B*u = Mu(1) = 1.

But as U € D(A.), then Au+ Bn = A(u + nug) € L*(0,1), which implies that u + nug € D(A)
and that u € H*(0,1) satisfies

u(0) = v/ (0) =" (1) = 0,4 (1) = . (3.27)
However, A(u + nug) = (u + nug)® = u®, thus we need to solve
u™® = =N = pPu, u(l) =7
with u satisfying (3.27). We deduce that u could be written as
u = ¢ sin(y/px) + e sinh(\/px) + c3 cos(y/px) + cq cosh(\/px),

with C' = (c1,¢2,¢3,¢4) " satisfying
MC =1V, (3.28)
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where
0 0 1 1 0
= 1 1 0 0 oo
M=1_ sin(y/p) sinh(\/z) —cos(\/i) cosh(y/n) M =1 9
—cos(y/p) cosh(\/p) sin(y/p)  sinh(\/p) ﬁ

We first remark that 1 # 0. Otherwise, since u satisfies u(*) = p?u and the boundary conditions
u(1l) = u”(1) =« (1) = 0, then there exists a constant ¢ € R such that u is given by

u(a) = cfsinb(y/Ai(1 - 2)) + sin(y/ji(1 - 2)).
But cosh(,/zz) + cos(y/f) > 0, then «/(0) = 0 implies that ¢ = 0 and hence U = (u, Au,n)" =0

which is a contradiction.

Consequently, each eigenvalue of A, is simple. In fact, suppose to the contrary that there exists
1 # 0 such that A = ip is not algebraically simple. Then as A, is skew-adjoint, A = iu is not
geometrically simple. Thus there exists at least two independent eigenvectors U; = (u;, vi, 1;),1 =
1,2, corresponding to A\, and hence U = noUy —m Uz = (u,v,n) = (u,v,0) is an eigenvector which
is impossible.

Going back to (3.28), we get from the first three equations,

sin(y/p) 4 sinh(y/z)
cos(y/i) + cosh(y/1r)”

Cy = —C1, €4 = —C3, C3 = —C]

Therefore the last equation of (3.28) becomes

_201(1 + cos(y/p) cosh(y/11)) o
cos(y/1t) + cosh(y/1t) v

As 1 # 0 then the determinant of M which is given by det(M) = —2 (1 + cos(y/p) cosh(/n))
is nonzero and C' is given by

— cos(y/pt) — cosh(y/1t)
C = M = 7 cos(/ft) + cosh(y/1t)
2uy/p(1 + cos(y/p) cosh(y/p)) | sin(y/p) + sinh( /1)

—sin(,/i) — sinh(,/z)

Substituting C' in the condition u(1) = 7, we finally deduce that p satisfies the charateristic
equation (3.25). m

Now, we study the asymptotic behavior of the eigenvalues of A..

Lemma 3.6.2 There exists kg € N large enough such that for all k > ko there exists one and
only one A\, = iy, eigenvalue of A, with \/py; € [km, (k + 1)w]. Moreover, as k — oo, we have
the following

us 1 1
\/Mk:2+k77+k3ﬂ_3+0<k3>. (329)
Let Uy = (w1, A1k, M1k) be the associated normalized eigenvector. Then,
4 1
Iml® = o <k4) . (3.30)
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Proof.
First step. Let z = /i where iy € 0(A.) and p > 0. Then by (3.25), we have

f(2%) = 2% 4 cosh z(2® cos z + sin z) — cos zsinh z = 0.

and sinh z = 62_26 ~ in f(2?) and dividing by

z

Replacing cosh z = % ZS; , we deduce that z

satisfies f(z) = 0, where

~ sin z — cos
f(z) =cosz + MhEC TRE

cosz sinz
23

+ 27 e % <cos z+ —3 —
z z
For z large enough we have .
f(z) =cosz+0O(1/2%).

It can be easily checked that for k large enough, f doesn’t admit any root outside the ball
B,=B (zg, k%), with zg = § + km. Then by Rouché’s Theorem applied on By, we deduce that

for k large enough there exists a unique root z; of f in [km, (k + 1)7]. Moreover, zj, satisfies

™
zk:§+k‘7r+ek,

with e = o(1). Since z satisifes f(z;) = 0, then ¢ satisfies

sin (5 + km + €) + o(1)
k373 + o(k3)

cos (g + km + €k> + +O(e ") =0.

Hence

e+ 8 1o (4) <o

k33 k3
and thus !
—k’er, + o(K*€}) + = + o(k*ex) + o(1) = 0,
7r
which gives
1 3
Therefore, (3.29) follows for uy, = z7.

sin(z) + sinh(zy)

. Th
cos(zy) + cosh(zy) o

Second step. Set [ =

et + 2sin(zg) — e %k
ek + 2cos(zx) + e~k

Br =

=1+o(e ). (3.31)
By the proof of Lemma 3.6.1, the last component n,}; of U ,i is nonzero and thus
. 9 1
Uk = (ug, izjug, 1) = —Uy g

is an associated eigenvector to izi with ug having the form,

up(z) = c1p sin(zgx) + cop sinh(zgx) + cap cos(zix) + cqp cosh(zxx),
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

with
Cok = —Clk, C4k = —C3}, C3k = —[BLClk-

It follows that

up(z) = c1p [(sin(zxz) — sinh(zxx) — cos(zkx) + cosh(zixz)) + (B — 1)(— cos(zxx) + cosh(zxx))] .

(3.32)
In order to get the behavior of n, = m, it is enough to compute the integral fol lug|2da.
Indeed, multiplying u,(f) = —\%uy, = puy by 1y, integrating by parts and noting that
ue(0) = up,(0) = 0, wp(1) = wy/(1) =1,
we obtain
1 1
/ lufl|2da = ,u;f/ urde — 1,
0 0
and hence
1 1 1
1U|1? = / u . dr + mf/ urde +1 = zu,f/ uidz.
0 0 0
Since
ey~ = F (e
F 1+ <F cos zg(1 + e~ 22)
B —1+0(e™)
 (=1)k*lsine, + O(e k)’
we deduce that
_1)k
i =" +o(1). (3.33)

As
1 1
/ (sin(zz) — sinh(zx) — cos(zz) + cosh(zz))?dx = / (sin(zz) — cos(zz))?dz + o(1) = 1 + o(1),
0 0

and

62z 2z

! e
/0 (= cos(zz) + cosh(zx))?dx = = + o(g)7

we consequently deduce due to (3.31), (3.32) and (3.33) that

1 1 k4
/ (@)dz = =+ o(1), and U] = - + o(k4).
; 4 4
Hence (3.30) holds. m

Proposition 3.6.3 Let Uy = (ui,vi,n1)? be the solution of the conservative problem (8.24)
with initial datum Uy € D(A.). Then there exists T > 0 and ¢ > 0 depending on T' such that

T
/0 (DAt > cl| U3 4oy (3.34)
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Proof. We arrange the elements of o(.A.) in increasing order.

Let J = {ip: [u] < po}- Then o(Ac) = J U {ipg = [k] > ko} and (Uy)ues U (Urk)jk)>k, forms
a Hilbert basis of H. We may write

Uy = ZUSUN + Z u(()k)ULk.

ned |k|=ko

Moreover,

Zuﬂ z,utn#_i_ Z u zukt

neJ |k[>ko

Note that ppi1 — pr > 5 for [k| > ko. Set v = min{%,min{m—u’] cpe Jy e J}} As
lw — 1| > v0 > 0 for all consecutive p € o(A.), 1’ € o(Ae). Then using Ingham’s inequality
there exists T > 27wy9 > 0 and a constant ¢ > 0 depending on 7" such that

E/Wdﬂﬁ>C§]%mF+z:%an
peld k|>ko

1
Due to Lemma 3.6.2, we have that \nm\? ~ o we deduce using Ingham’s inequality the
existence of T" > 0 such that

/hmﬁ>ZMIM2 by

ped k| >ko

()’2

(3.35)

Therefore, we obtain (3.34) as required. m

Theorem 3.6.4 Let Uy € D(Ag) and let U be the solution of the corresponding dissipative
problem

U = .AdU, U(O) =0 € D(Ad)

Then U satisfies,

1
VOIS 757100l (336)

Proof. Since the operator D € L(U), then Lemma 3.3.1 holds true.

Set H1 = D(A.) and Ha = D(A_ 1), the dual of D(A.) obtained by means of the inner product
in X. Then H = [H1;Hz]i/2. By Proposition 3.6.3, we have

T
Aumm@%@zmmﬁf

By Theorem 3.5.1 applied for § = 1/2, we therefore obtain (3.36). m
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Example on uniform stability

Consider the following system,

uge (2, 1) + u'® (2, 1) + abpe(z,t) =0, tef0,00),0<z<1

Or(z,t) + BO(x,t) — aupge(z,t) = 0, tef0,00),0<z<1 (3.37)
uw(0,t) = u(1l,t) =u"(0,t) = u"(1,¢t) = t € ]0,00) ’
u(z,0) = ugp(x), ut(x,0) = ui(x), 0(z, 0) Oo(z), O<zxz<l1

with a > 0,8 > 0. Define the following spaces,
V = H*0,1)N H}(0,1), X =U = L*(0,1),
and the following operators,
D(A) = {u € H'(0,1) N H}(0,1) : uze(0) = ugy(1) = 0}, Au = uggae € L*(0,1),
C: L*0,1) — L2(0,1)
0 — —p50.
Remark that C is a bounded operator on L2(0,1). Moreover, B and B* are given by

B: U=V ,B*:V—-U
9—)0&911 U — QUgy,

and D, D* € L(U) with D§ = D*0 = /6. The norm defined on the energy space H = V x X xU

is given by
1 1 1
uy0,0)T I3, = / LY / [of2da + / 6dx
0 0 0

D(Ag) =D(A.) = {(u,v,@)T cVxVxU:u®+0,,¢c L*(Q)}).

We moreover have

The associated conservative system is given by

uge (2, 1) + u® (2,1) + by (z,t) =0, tef0,00),0<x<1

Or(x,t) — augey(z,t) =0, te0,00),0<z<1 (3.39)
w(0,t) = u(1,t) = u"(0, t) u’'(1,t) = t €1]0,00) ’
u(z,0) = up(x), u(z,0) = ul(x), (93,0) Oo(z), O<z<l1

In the following proposition we prove that the solution w, 6 of (3.38) satisfies the required ob-
servability inequality (assumption (O)), which is enough to deduce the exponential stability of
(3.37) as D € L(U).

Proposition 3.6.5 Let Uy = (ug,u1,00)" € H. Then the solution (u,0) of (3.38) satisfies

T
/0 16(t)[2dt = |[Tol. (3.39)
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Proof. Writing (ug,u1,600)" € D(A.) with respect to the basis (sin(kmz))zen+ of L2(0,1), we
have

ug = E ul sin(kmz), up = g up sin(krz), 0y = E 6 sin(kmz).
keN* keN~ keN*

The solution (u, ) of (3.38) is thus given by

Zuk )sin(kmx) and 6(t ZQk )sin(kmx).
keN* keN*

By the second equation of (3.38),
0}, (t) + ak’r?ul (t) = 0,Vk € N*.
Due to the initial conditions we deduce that
Or(t) = —ak?mug(t) + 0 + ak*m*ul).
Replacing u and 6 in the first equation of (3.38), we deduce that

uf (t) + Kt (1 + o®)ug(t) = ak?®72(0) + ak®n?ul), vk € N*,

hence (90 ) )
+ ak*mud 9 9 o g
t) = s(k 1 2¢ k 1 2¢
up(t) = K2r2(1+ a2) + ¢y cos(k*m + ot) 4 cosin(km + a?t),
where
—oe92 + k27r2u2 u}c
Cl — =

Rril+a?) P 2yt ar
obtained by the initial conditions uz(0) = uf, u} (0) = u} and 6;(0) = 69.

Finally,
1
Ok (t) = ﬁ[\/ 1+ a2(6) + ak*72ud) + a1 + a2(ab — E*ru?) cos(v/'1 + a2k*r?
1+«
—a(1 + &®)ui sin(V/1 4 a2k?7?t)].
Set T' = 2 Then
Vit aln 7
b = ————— [(2+ah)(6])” - 2a(=2 + @®)K* 76y + o (3K 7 (uf)? + (1 + a?) (w)?)]
(1+a?)2m
2(1 1)2 2,0
_ o« 1+« )guk) (2 60) M (k: gk> 7
(I1+a?)2m 0

where M is a square matrix given by

30427r3 a(—2+a?)m
- 5
(1+a2)3 (11a2)3
_a(—= 2+a2)7r 2+t
5
(1+o¢2)? m(l4a?)2
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

But as 5 o 4 5 4
2 2 3

det M = — > 0, trace M = =& 1507

(1+a?) (14 a2)2

> 0,

we deduce that Apin > ¢ > 0 (where Ay, is the smallest eigenvalue of M) for some constant ¢
independent of k and hence

/ P =T <a2<1 FOU) | MR (d)? + wm)
0 (1+a?)2m

we get

T
/0 0)1Pdt 2 Y (K (u)? + (60) + (u)®) Z Vol
keN*

We hence conclude (3.39) by denseness of D(A;) in H. =

Recall that the energy of a solution (u,#) of (3.38) is defined by

1 1 1 1
0 0 0

Theorem 3.6.6 Let Uy € H. Then there exists w > 0 such that the energy of the solution (u,6)
of (3.37) satisfies
E(t) S e ¥ E(0),Vt € [0,+00). (3.40)

Proof. By Proposition 3.6.5, assumption (O) holds true. Then (3.40) follows by applying
Theorem 3.4.1. =m

Hybrid example-2D problem

Let Q be a bounded domain of R? whose boundary I' satisfies
I =TyuUTly, ToNTy =¢, and meas Iy # 0.
We assume moreover that there exists a point zg € R? such that
IFp={zel:m(z)r <0}, I'1 ={z el :m(x)r>w>0},

for some constant w > 0, where m(x) = x — zp and v = v(x) denotes the unit outward normal
vector at x € I'. Denote by R = ||m||s = sup|/m(z)].

e
Consider the following system,

yu(x,t) — Ay(x,t) =0, x e Q,t>0,
y(z,t) =0, x €Ty, t>0,
ayu(z,t) + Opy(z,t) + n(x,t) =0, xeTq,t>0,
n(z,t) — y(z,t) + bn(x,t) =0, x el t>0,
y(x,0) = yo(x), ye(x,0) =y (x), =x€Q,
n(x,0) = no(z) zely,
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications
where a and b are two positive constants. In order to justify that the system could be written in
the proposed general form, we introduce a proper functional setting. Let

X =L*Q) x L*(T)

endowed with the inner product,

(007 @O7), = [ <wizdosy [ <ef>ds

1

and
W={yeH(Q):y=0o0nTy} = H} (Q), U=L*I).

Define also V' by
V= {(yug) eEW x LQ(FI) Lay = § on Fl},

and the operator (4, D(A)) by
Ay )" = (=Ay,duylr,)

with
D(A) ={z = (y,)" €V :ye H (O}

We can easily check using Lax-Milgram lemma that (A +47) are surjective. In addition, since A
is symmetric we deduce that A is self-adjoint. The corresponding form a is given by

a(u, ) :/ <Yy Uz > dr, u= (y,8) €Via=(3,8) €V.
Q
In addition, we define for every n € U and (y,£)" € V the operators B and B* by
Bn=(0,n)", B*(y,&)" = ylr,.
The operator C' = 0 and the operator Cis given by
an = —by, n e LXTy).

Hence the system (F,) can be written in the form of system (3.2).
Accordingly, we define the energy space

H =V x L*(Q) x L*(I'})?,

endowed with the inner product

1 -
(u,ﬁ)H:/ <y$,y}>dx+/ <z,2>dm+/ <§,£>ds+/ <n,n>ds,
Q Q aJry I

where u = (y,¢, z,&,n), @ = (7, (,2,€,7) € H, and < .,. > represents the Hermitian product in
C. The associated norm will be denoted by || - ||3. Moreover, (A4, D(Ay)) is then given by

Adu = (2)57 Ay7 _al/y - ’I’],Z|F1 - bn)7 vu = (yvgaz)gvn) € D(Ad)7
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3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications
with
D(Ad) = {u = (yuc’zvgvn) EH: Y€ H2(07 1)7Z € VV?C = ay‘Flg = CLZ|F1}‘

Hence, the previous problem (Fy) is formally equivalent to
up = Agu, u(0) = up, (3.41)

where uo = (v0, avolr,, Y1, ayi|r,,n0). The energy of the system (P,) is given by

1 1
B0 =5 ([ lwPas+ [ 1voPas+ L [ puas+ [ pelas).
1 1

and its derivative
—FE(t) =—b 2|ds.
m (t) N In°|ds

The corresponding conservative system is defined by

( yu(x,t) — Ay(z,t) =0, xeQt>0,
y(z,t) =0, xz €Tyt >0,
aytt(x7t) + 8Vy(x,t) + n(xat) - 07 T e Flvt > 07
(Fo) _
nt(xat)_yt(x’t) _Oa l‘EFl,t>0,
y(x,O) - yO(x)a yt(x70) = yl(x)a WIS Qv
( 7(,0) = mno(z) z €.

The initial value problem associated to the conservative system (Fp) is given by
up = Acu, u(0) = uo, (3.42)
where
Acu = (2,& Ay, =0y =1, 2|r,), Vu = (y,¢, 2,§,1) € D(Ac), D(Ac) = D(Ag).
As the operators D and D* given by,
Dn = D*n= by, ne L*(I),

are bounded, Lemma 3.3.1 holds true. Thus in order to deduce the polynomial stability of the
solution of (3.41), it is sufficient to check that the solution u; of (3.42) satisfies the observability

inequality (O),
T
b/ / 21 2 ol 4o,
o Jr, " D(A:")

where D(A_?) denotes throughout the example the space (D(A?))’.
We first state the following proposition.

Lemma 3.6.7 Let ug = (yo,Co, 20,€0,m0)" € H and let uy = (y1,C1,21,&1,m)" be the corre-
sponding solution of the problem (3.42). Then there exists cp > 0 such that

T
[ [ 1= crlualiy ey (3.43)
1
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Proof. First step. Let vg € D(A.) and v = (y,¢,2,£,1) " be a solution of
vy = A, v(0) = vp. (3.44)

Then there exist two positive constants C; > 0,7 = 1,2 such that

T T T
(T = ) ol < Cs ( e [ [ owes [ ] m?) L (345)
0 Fl 0 Fl 0 Fl

Indeed, for vy € D(A,), we have

[ fomen - [ s [fpoms]

o e [ fonome s [fram o]

/OT/QA?/@?"'V?J) = —/OT/QVy-V(Zm-Vy)+/OT/Fayy(2m.vy) (3.47)
= —/[]T/F(m‘v)Vy|2+/OT/Fayy(2m-vy).

Finally, multiplying the wave equation by 2m - Vy and substracting (3.47) from (3.46) leads

to,
2/0T/Q|yt12—/0T Fl<m~u>|yt|2+/0T/F<m-uWyF (3.48)
+[/Qyt2m-VyI:/OT/Fayy(Qm-Vy):O.

Multiplying the wave equation equation by y we obtain

_/OT/Qyt|2+/OT/QIVy|2+ [/ﬂyty]j_/oT/F(V.vy)y:O. (3.49)
/OT/Ff’?uy@m-Vy) = 2/OT/F(m.z/)(&,y)2+2/0T/F(m_¢)(ayy57y),

then taking into consideration the Dirichlet condition on I'g, we get

/OT/Fﬁuy(Qm'V?/)—/OT/F(m'V)|Vy2 = /OT/F(m.V)(a,,y)Q_/OT Fl(m'y)(aﬂ/)z

T
+2/ g (m.7)(0yy0ry).

for all T" > 0.

and
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Due to the geometric conditions imposed on I'; we have

[ foaten-vo- [ [owr < [ [ oo+ /OT Rz ED
(r+ ) / /F (@)

IN

IN

Hence (3.48) leads to

T T T
2/ /\ytm[/ytzmw] s/ (m- D)l + R+// oy (3.51)
0 Q Q 0 0 I I

Adding (3.49) to (3.51), we obtain

/OT/Q!yt\2+/OT/Q|Vy2 [/ ye2m - vy}T—l— [/ yty] / /1/ Vy)y (3.52)
/ Flm v)|ysl? +R+/ /rl Ly)?

T
Note moreover that {/ yi2m - Vy] + [/ yty} 2 —FE(0), and
Q

T 1 /T cpe T )
[ fomes favss [ [osif [ ] [
0 JI: 2¢e Jo I ' 26 Iy 2 Jo Ja

We deduce that for € > 0 chosen small enough there exists C' > 0 such that

1 T T
<T—01>Hvo||2—//|yt|2—/ m? < R+t // Y (3.53)
g 0o Jr, 0o Jr, w o 2e r, Y
+ / (m - 0) |l
0 Iy

which leads to the required result (3.45).
Second step. Let o > 0 and set
1
m = —(=0y =) +2az +a’y

We have the following expression for |n;]? on I'y,

(ac? —1)2 inl? 4o

1 2 dov
m|? = g\f%y\Q +40®|z* + —— Ozt (11— ac®)0,yn + 7(00042 —1)am.

By the boundary condition on I'1, ; = z and 9,y = —n — any, we get

—1+ ac®)(1 + aa? 2(—1+ aa?
( )2( )‘77‘2 + 4oy + damme + (a)m?tt-

1
m|? = = 10y|* + 40|z +
a a
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Thus
T ac ac ac
/0 [ mPds = / / 2|a,,y|2 (40?2 —Mn 2y ELF 2“* RINEPS
1248 / (n(T)? — 1(0)?)ds + 20 / ((T)? — 1:(0)*)ds + (3.54)
' 1N
2(—1 + aa?) 2(—1+ aa?)

/ U(T)nt(T)dS—/ 1n(0)n:(0))ds.
a I a r

Choosing « large enough, we get

1 2(—1 2 2(1 2 -1 (1 2
w1:—2>0,w2:4a2— ( —|—aa): ( +aa)>0,w3:( +aa”)(1 + ac”)
a

> 0.
a a a?

In addition, (3.54) implies that

T T
/ i 2ds > / / a9yl + wal2l? + wslnlds — Kaallvol,
0 Fl 0 F1

for some constant K, , > 0 independent of 7.
Combining the previous inequality with (3.45), we deduce the existence of ¢; > 0 such that

T
/ mPds > e1(T — C)llwoll3, — Kaallvol.
0 Iy

Finally, choosing 7" large enough, we obtain

[ = 7 i

for some positve constant co depending on T'.
Last step. Let ug € D(Ay) and let uy = (y1,(1,21,€1,71) " be the corresponding solution of
(3.42), then

2
Ay —1n) + 20z + a? n| ds > 02””0“%’ (3.55)

v=(4,¢2%6m" =[(A+al)’]u
is a solution of (3.44) where vg = [(Ac+al)?] tug € D(A.). Since (A.+al)? = A24+2aA.+a?1,
the last component 77 of uy is given by

1
m=—(=0uy = 1) + 20z + o,

thus by the two previous steps we get (3.55). Noting that |[uollp(a.) ~ [[voll%, We consequently
deduce that (3.43) holds for all ug € D(A;). ®

Theorem 3.6.8 Let ug € D(Ay) and let u be the solution of (3.41). Then u satisfies,

1
O $ = plualiboay (3.50)
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Proof. Since the operator D € L(U), Lemma 3.3.1 holds true.

Set H1 = D(A.) and Hg = D(A;?). Then H = [H1;Ha]1/3- By Lemma 3.6.7, we have

T
[ 1Dr (o) s > erfuolf
By Theorem 3.5.1 applied for § = 1/3, we therefore obtain (3.56). m

Remark 3.6.9 Using the same method we get an analogous result for the one dimensional prob-
lem. we can also get the observability inequality by a spectrum analysis and that was already done
in the paper [34], where the authors obtained an optimal decay, thus we expect the decay in the
two dimensional case to be optimal as well.

Remark 3.6.10 Consider the following system studied in chapter 1 (see [2])

Yyue(z,t) — Yuu(T,t) = 0, O0<z<l1,t>0,

y(0,1) = 0, t>0,

(L) + (1), Co)en = 0, >0, (3:57)
nt(t) BOU(t) - C()yt(]-at) = O) t> O)

and
y(@,0) = yo(x), ye(x,0) = y1(z),n(0) = mo,0 <z < 1,

where By € My(C), Cy € C" are given. System (3.57) can be written in the form (3.1) where

={y € H(0,1) : y(0) = 0}, X = L?(0,1) and U = C". In this case, C = By is a bounded
opemtor and Bn = (n,Cy)o1 for all mp € C™. Indeed, since C is bounded then it is enough to
verify assumption (O). Assumption (O) was verified in [2] and the polynomial stability of (3.57)
was deduced. In particular, for n = 1 we obtain the system studied in [53], where a polynomial
decay s proved using a mutltiplier method. The polynomial decay can be also obtained by proving
an observability inequality for the solutions of the corresponding conservative system which is
exactly what has been verified in [2/, thus applying the appraoch intoduced in this chapter .

3.6.1 Unbounded example

Consider the following system

Ut (2, 1) — Uge (2, t) +w(2,t) = €0,00),0<z<1
wi(z,t) — iwge(z,t) + w(&, )0, —ut(az t) =0, €[0,00),0 <z <1
(0,6) = u(L, ) = w(0,1) = w(1,) = 0, € [0,00), (3.58)
<1

UE% 0) = uo(z), u(z,0) = ui(z), w(z,0) = wo, 0 <z<l,
where £ € (0,1). Define the following spaces and operators:
X =U = L*0,1),V = H}(0,1),U = L*(0,1),W = C,
A:u € D(A) = —uy, € L*(0,1), D(A) = H*(0,1) N H}(0,1),
and B = B* = Iy = I2(g,1)- In addition,

D:neC—né € (D(C)), D*:we D(C)— w(E) €C,
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and
C:we D(C) — —iwg, € L*(0,1), D(C) = H*(0,1) N H}(0,1).

The operator C is thus given by R
Cw = iwyy — w(§)0¢

with
D(C) = {w € Hy(0,1) N[H(0,&) N H*(&,1)] + i[wy]e = i[wa(§7) — wa(§7)] = w(&)}.

As the operator D is unbounded, we need to verify that the problem satisfies assumption (H)
as well as the asumption (O) for conservative problem. In this case we have

D(Aq) = D(A) x V x D(C)

and

D(A.) = D(A) x V x D(C).

In order to verify the assumption (H), we proceed by finding the transfer function, for this
purpose we recall that us = u — u; and we = w — wy satisfies (3.15) which is in this case

Opug — Oppug(w,t) + wa(z,t) =0, tef0,00),0<x<1
Opwa(x,t) — 10ppwa(z,t) — Opug = w(§, t)0¢, te0,0),0<z<1 (3.59)
u2(0,t) = ug(1,t) = we(0,t) = we(1,t) =0, t €10, 00), '
uz(xz,0) =0, dpuz(x,0) =0, we(x,0) =0, 0<z<l,

and
Opuy — Ogzur (z,t) + wi(x,t) =0, te0,00),0<x<1
Oywy (x,t) — i0ppwy(x,t) — Opug = 0, tef0,00),0<x<1 (3.60)
ul(oat):ul(lvt):wl(o?t):wl(lvt)zo’ te [0700)7 ’
U1(:E,O) = Ug, 8tu1(x,0) = U1 wg(l’,()) = wo, O<ax<l,

Verifying the assumption (H) is equivelant to verifying (see |9, Proposition 3.2| for more details)

w2 (&, 0)° S Jw(€, 1)
For this purpose, we state the following proposition.

Proposition 3.6.11 Let (u2,w2) = (u —u1,w —wy) be the solution of (3.59). Then wa verifies

lwa (&, 8)]* < |w(& t).

Proof. Let A = 1+ in and consider g, ws the Laplace transforms of us and ws respectively.
Then g and wy satisfies (3.16) given by

A2 (2, \) — Opzlin(x, \) + o (2, \) = 0, (3.61)
)\w2($7 )‘) - ia:r:a:wZ(xv )‘) - )‘ﬂ2 = w(fv )‘)5£a .
The problem reduces to studying s and wy solutions of
)\2ﬂ2 — Opplin +Ws =0
{ Ay — iy — NIy = —id (3.62)
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with

2(0) = 12(1) = 0,%2(0) = wa(1) = 0, [Oxwe]e = 1, [wa]e = 0,
and proving the existence of Cg > 0

First, we set
Wy = W3 + Wy,

where

AW3 — 10z W3 = —1dg, (3.63)

with
w3(0) = ws(1) =0, [82;@3]5 =1, [’&)\3}5 =0. (3.64)

and
AWy — 1052W4 = \Uo. (3.65)

with
wy(0) = wa(1l) = 0. (3.66)

Let 8 > 0 be fixed. It is required then to prove that
”&53(57)‘)‘ < Clﬁv ‘@4(67 )‘)’ < 0257V)\ = /8 + Zyuy e R.

We start by writing the expression of ws,

= V2sin(kré) | sin(k7€)|?
U)3($,)\) = — m\/isln kﬂ'x 22 kz 3 ZA
k=1

For simplicity we consider A\ = 1 £ im?y?.

+o0

N 1

QU3(§, )\)| 5 Z ‘(]CQ :l:y2)7T2 - Z’
k=1

We first give an estimate for A = 1 + im?y?,

+°° 1 1
D3(€, A e <

For A = 1 —in%y?, we have

P 2 1 1
‘w3(§7)‘)|§p Z 7 22 + 27 + Z 22

1<k<E(y)—1 E(y)+2<k
But

1 Ey)—-k 1
2 wmEs X murms 2 By RSt

1<k<E(y)-1 1<k<E(y)—1 1<k<E(y)-1
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and
o

1 1 > 1 T
Z k2 —y? :;(lerE(y))Ly2 SZ(k'—l)2 "6

E(y)+2<k
Therefore |ws3(£, A)| is bounded on the line R(\) =

It remains to find the estimate satisfied by @4(¢, \). Indeed, since (v2sin(knz))gen- form a
Hilbert basis of L?(0,1), then we may write o, s, W4 as follows

ZUQ V2sin(knz), Wy = Zw2 )\@sm(kmv ), Wy = Zw4 V2sin(km).

k=1 k=1
By the first equation of (3.62), we get
VE > 1,ul) = _w)
=5t T ey
Due to (3.65)
()
(k) _ AU
> -«
k21w T k2w 4N
We deduce that N
) _ )\w( )

4T T e 1 N (ik2r2 4 N)

For A =1+ iy we have

|27 + M| = \/4y2 + (14 k272 — y2)® > 2Jy|,

and
ik?m% 4+ N = |1 + k72 + iy > |yl

Hence for |y| large enough we have

(k)
| < [wy |

|y

Using wy = w3 + w4 we get for |y| large enough
g

k:
wi| <
ly|

We finally conclude that for |y| large enough |w4(&, A)| is bounded on the line R(\) = 1. It
follows that |wa (&, A)| is bounded as well.
[

In what follows we prove that the observability assumption (O) holds on subspaces of D(.Ay)
on which we deduce the polynomial stability of the energy. Let us first remark that 0 is not an
eigenvalue of Ay. Let A\ = iu an eigenvalue of Ay and U = (u,v,w) a corresponding eigenvector.
We then have,
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2 _
{ WU — Oppu +w =0 (3.67)

pw — Ogaw — pru = 1w(&)de.
with
u(0) = u(1) = w(0) =w(l) =0.
Multiplying the second equation by w then integrating by parts on (0, 1), we find that w(§) = 0.
We hence deduce that w = 0. Moreover, multiplying the first equation by w, integrating by parts
and considering the imaginary part we deduce that u = 0.

In order to verify the observability assumption (O) we study in what follows the spectrum of
A.. Recall that the eigenvalues of A, are of the form A\ =iy, u € R.

Proposition 3.6.12 Let o(A.) be the set of eigenvalues of A.. Then
(i) Every element of o(A.) is simple and o(A.) is a disjoint union of three sets:

o(A;) =ogUor Uos

where oy is a finite set, and there exists kg € N* such that o1 = {i/‘k,l}kez,lklzkm and o9 =

{2} keN k>ko - ,

||

(i) For iuy; € 04,1 = 1,2, an associated eigenvector ¢, . = (“uk,ivvuk,wwuk,i)v with

a1 =1 and ay = 4 is given by
gy (z) = sin(knz), U,U«k,i(x) = i/‘k,iuﬂk,i($)v w#k,i('r) = (Hi,i - k27r2) sin(km).

(iii) The following estimates hold

1 1
Pt = KT+ ogrg +0(55), [k = o0, (3.68)
[ @pllae ~ 1, (3.69)
pa o — k*n? = = 0(1) (3.70)
k,1 kr L ) .
1
fro = —k*m? + O(33), k= +o0, (3.71)
H¢Hk2H’H = 0(1)7 (3.72)
13— K = Kt + O(k?). (3.73)

Proof. Let A\ = iu be an eigenvalue of A, and U = (u, Au, w) be a corresponding eigenvector of
A.. Then v and w satisfies

2
— U — Ozpu+w =0
{ pw — Oppw — pu = 0. (3.74)
Replacing w in the second equation, we find that
Ovzaztt + (N2 - :U’)a:cxu + (,Uf - ﬂg)u =0, (3 75)
u(0) = 0zzu(0) = u(1l) = Ozzu(l) = 0. ’

It is easy to check that 4 =0, =1 and p = —1 are not eigenvalues of A..
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1 1
Let X; = i(u — 2 —VA) and X, = i(u — 12 +VA) be the roots of

p(X) = X?+ (= )X + p— p* =0,

where A = pu(p — 1)(% + 3 + 4) is the discriminant of p.
Set t; = v/X;,i = 1,2 then the general form of u satisfying the first equation of (3.75) and the
left boundary condition is
u(z) = ey sinh(t12) 4 co sinh(tox).

Considering the right boundary conditions we see that u is non trivial if and only if ¢; and t2
satisfy
sinh(t;) sinh(t)(t? — t3) = 0.

But t? — 2 # 0, since u # 0 and pu # 1. Hence t; and t5 satisfy the following characteristic
equation

sinh(t1) sinh(t2) = 0,
which gives that ¢t = ikmw or to = ikm, k € Z* i.e X1 = —k272 or X9 = —k%72.

Now, we remark that all the eigenvalues of A, are simple. Suppose otherwise that there exists
a double eigenvalue, then there exist k;, € N*,i = 1,2 s.t X; = —k;7%,i = 1,2. Thus we have

X1X2 o _k’%k‘%ﬂj
X1+ Xo N ki%-l—k%

=p+1.

Now, replacing p in X1 + Xo = p — p?, we find that

2k + 4k2k2 + 2ky — k72 — kS7? + kiksnt =0,

2 i3 a transcendental number.

which is impossible since 7
Therefore,

u(z) = sin(kmz), w(z) = (u? + X;)sin(krz), i =1 or 2.

Moreover, the eigenvalues of A, are formed of two disjoint families of eigenvalues. The first class

of eigenvalues is obtained from X; = —k?7?, the second class is obtained from X, = —k?72.
Now, we firstly study the asymptotic behaviour of the first class:

since X; = —pu? + ; + O(i) = —k*7% then p = krm + Tikﬂ + 0(%), |k| = oo. If we denote by

{iptg 1 e z+ this first class of eigenvalues then the previous estimate is (3.68). Using the previous

estimate we directly get (3.69) and (3.70).

Secondly, since Xo = p + O(—) = —k?m? we deduce that the large eigenvalues of the second
1

class are negative, and denoting them by i 2 we easily see that (3.71) holds true. Moreover,
since ,uz’Q — k%72 = O(k*) then (3.72) holds. m

In order to use generalized Inghams inequalities we need to estimate inf | oo, 1 — 1k 2|
Hi, 1 €01,y 9 €02

Unfortunately it seems to be a difficult task and it remains an open question. Hence, to get an
observability result we will take the initial condition Uy in some subspaces of H. For this purpose
we introduce

104



3 Stabilization of second order evolution equations by unbounded dynamic feedbacks and applications

Hy = span(¢#)”ggo U span(¢#)#€m and Hy = span(@L)#eoo U span(@L)#eog.

Before giving an observability result we introduce the set S of all numbers p € (0,7) such that
g ¢ Q and if [0, ay, ..., ap, ...] is the expansion of % as a continued fraction, then (a,) is bounded.
Recall that if 7€ € S then

]ﬁMM&szrkeZﬂ (3.76)

(see for instance [8]).

Proposition 3.6.13 1. For all £ € (0,1) there are no T,C > 0 such that for all Uy € H we
have

T
/rwwwﬁzawmm (3.77)
0

2. Suppose that &€ € S.
Let Uy € Hy and U = (u,v,w) be the corresponding solution of the conservative problem

Uy = AU, U(0) = Up. (3.78)

Then there exists T >0 and a constant cp > 0 such that

T
2 2
|t Par = Criphl s, (3:79)

where D(AZ3) = (D(A3)), obtained by means of the inner product in X.
For Uy € Hy we have

T
/IMmWﬁZQszm (3.80)
0 D(A. ?2)

c

Proof.

1. Since

lim H(iﬂn,l —Ac) an,l '2;{+ H( 0 0 D* )an,lHZU = 0.

n—-+00

Which implies according to [36, Theorem 5.1| that we don’t have the exact observability,
i.e., the inequality (3.77).

2. Let Uy € H;. We may write

Uo = Z Uy bu + Z u(()k)¢uk,1'

pEao Ik|>ko
Moreover,
1 . K
w(,t) = T Z upb e w, (&) + Z ug )ew’“»ltw#k’l(g)
peao k|>ko
Note that v; = inf  |u— /| > 0, then using Ingham’s inequality there exists T >
Hop €0, puF

2my1 > 0 and a constant ¢z > 0 depending on 7" such that
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T
1 k
| e e = erp | 22 Wbun©OF + 37 fuwn (€
0 pEag k[>ko
Now using (ii), and estimates (3.68),(3.69), (3.70) of Proposition 3.6.12 we get (3.79). For
Up € Hy, we use analogous argument.

Theorem 3.6.14 1. For any & € (0,1), the system described by (3.58) is not exponentially
stable in H.

2. Let Uy € Hi N'D(Ay), and let U be the solution of the corresponding dissipative problem
Uy = AqU, U(0) = Up.

Then U satisfies,
U <

UollZ, 4 3.81
(1+t)§H ollpeay (3.81)

3. Let Uy € HyN'D(Ag), and let U be the solution of the corresponding dissipative problem
Uy = AqU, U(0) = Up.

Then U satisfies,
1

2 2
OIS mHUoHD(Ad)- (3.82)
Proof.
1. This result is a direct consequence of the first assertion of Proposition 3.6.13 and Theorem
3.4.1.

2. Due to Proposition 3.6.11 and Proposition 3.6.13 we deduce (3.81) from Theroem 3.5.1
setting H1 = D(A.) and Hy = D(A;?) and 6 = 1.

=

3. As in 2. we deduce (3.82) setting H; = D(A.) and Hy = D(A. ?) and 0 = .
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