Thèse soutenue

Modélisation et caractérisation de nouveaux matériaux piézoélectriques (sans plomb et composites de connectivité 1-3) pour la transduction ultrasonore

FR  |  
EN
Auteur / Autrice : Rémi Rouffaud
Direction : Franck LevassortAnne-Christine Hladky
Type : Thèse de doctorat
Discipline(s) : Sciences de l'Ingénieur, spécialité Acoustique
Date : Soutenance le 18/12/2014
Etablissement(s) : Tours
Ecole(s) doctorale(s) : École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire ; 2012-....)
Partenaire(s) de recherche : Equipe de recherche : Laboratoire GREMAN (Tours)
Jury : Président / Présidente : Dragan Damjanovic
Rapporteur / Rapporteuse : Emmanuel Le Clezio, Claude Richard

Résumé

FR  |  
EN

Depuis plusieurs décennies, les matériaux piézoélectriques à base de plomb dominent le marché de la transduction électromécanique du fait de leurs très hautes performances. Or, au début du XXIème siècle, de nouvelles restrictions européennes apparaissent, poussant à faire disparaître définitivement l’usage de ce matériau dangereux pour l’environnement et la santé. À partir de là, une course est lancée dans la communauté scientifique qui doit trouver de nouveaux matériaux sans plomb aux performances équivalentes. Ce travail de thèse s’inscrit dans ce challenge. Le matériau piézoélectrique sans plomb KNbO3 a été identifié comme une réelle alternative. Ses caractéristiques sont déterminées en prenant en compte la cohérence de l’ensemble qui est une nouvelle problématique soulevée par les utilisateurs de ces données de matériau. En effet, le résultat des simulations numériques faites par la méthode des éléments finis, entre autres, est sensible à cette absence de cohérence. Partant de ce travail, il est alors possible de simuler correctement, et grâce aux éléments finis, le comportement électromécanique d’une nouvelle structure pseudo-périodique de composite piézoélectrique de connectivité 1-3 conçue pour s’affranchir de limites de fonctionnement actuelles. Les résultats théoriques sont également validés expérimentalement. Enfin, un algorithme de caractérisation multimodale et multiphasique, basé sur l’algorithme génétique, a été réalisé pour obtenir les propriétés de ces matériaux piézoélectriques après leur usinage nécessaire à leur intégration dans un transducteur ultrasonore. Cela permet d’adapter les pièces périphériques à ces nouvelles caractéristiques pour une optimisation ultime des performances des transducteurs finaux fabriqués au cours de cette thèse.