Thèse soutenue

Intégration de l'inférence abductive et inductive pour la représentation des connaissances dans les réseaux de gènes

FR  |  
EN
Auteur / Autrice : Tan Le
Direction : Andrei DoncescuPierre Siegel
Type : Thèse de doctorat
Discipline(s) : Systèmes informatiques
Date : Soutenance en 2014
Etablissement(s) : Toulouse 3

Résumé

FR  |  
EN

Le raisonnement diagnostique (abductif) et le raisonnement de prédiction (inductif) sont deux des méthodes de raisonnement qui permettent la découverte de connaissances nouvelles. Lorsque le raisonnement abductif est le processus permettant de trouver la meilleure explication (hypothèse) pour un ensemble d'observations (Josephson, 1994), le raisonnement de prédiction est le processus, à partir d'un ensemble d'observations, permettant de trouver tous les résultats possibles. Ces observations peuvent être les symptômes d'un patient, des expériences concernant les réseaux métaboliques et génomiques, etc. Dans cette thèse, nous nous sommes intéressés à la représentation, l'analyse et la synthèse des réseaux de signalisation génomique en utilisant la logique des hypothèses. En fait, ce mémoire se focalise sur la modélisation des voies de signalisation en réponse à la cassure double-brin de l'ADN. Pour implémenter l'abduction nous utilisons les algorithmes de production. Ensuite, la logique des défauts permet de construire des modèles de représentation minimale. Ces algorithmes de découvertes de connaissances sont prouvés sur la carte de cassure double brin de l'ADN. Cette carte est minimale en tant que graphe de causalité biologique et elle permet d'intégrer les données biomoléculaires.