Thèse soutenue

Compressed sensing and dimensionality reduction for unsupervised learning

FR  |  
EN
Auteur / Autrice : Anthony Bourrier
Direction : Rémi Gribonval
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et télécommunications
Date : Soutenance le 13/05/2014
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes)
PRES : Université européenne de Bretagne (2007-2016)

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse est motivée par la perspective de rapprochement entre traitement du signal et apprentissage statistique, et plus particulièrement par l'exploitation de techniques d'échantillonnage compressé afin de réduire le coût de tâches d'apprentissage. Après avoir rappelé les bases de l'échantillonnage compressé et mentionné quelques techniques d'analyse de données s'appuyant sur des idées similaires, nous proposons un cadre de travail pour l'estimation de paramètres de mélange de densités de probabilité dans lequel les données d'entraînement sont compressées en une représentation de taille fixe. Nous instancions ce cadre sur un modèle de mélange de Gaussiennes isotropes. Cette preuve de concept suggère l'existence de garanties théoriques de reconstruction d'un signal pour des modèles allant au-delà du modèle parcimonieux usuel de vecteurs. Nous étudions ainsi dans un second temps la généralisation de résultats de stabilité de problèmes inverses linéaires à des modèles tout à fait généraux de signaux. Nous proposons des conditions sous lesquelles des garanties de reconstruction peuvent être données dans un cadre général. Enfin, nous nous penchons sur un problème de recherche approchée de plus proche voisin avec calcul de signature des vecteurs afin de réduire la complexité. Dans le cadre où la distance d'intérêt dérive d'un noyau de Mercer, nous proposons de combiner un plongement explicite des données suivi d'un calcul de signatures, ce qui aboutit notamment à une recherche approchée plus précise.