Thèse soutenue

Comportement physicochimique des polymères pariétaux à l’échelle supramoléculaire dans des assemblages bioinspirés de la paroi végétale : application à la fibre native
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Loïc Muraille
Direction : Bernard Kurek
Type : Thèse de doctorat
Discipline(s) : Sciences - STS
Date : Soutenance le 14/10/2014
Etablissement(s) : Reims
Ecole(s) doctorale(s) : Ecole doctorale Sciences, technologies, santé (Reims, Marne)
Partenaire(s) de recherche : Laboratoire : Fractionnement des Agro-Ressources et Environnement (FARE) - INRA UMR A 614 (Reims, Marne)
Jury : Président / Présidente : Stéphanie Baumberger
Examinateurs / Examinatrices : Brigitte Chabbert, Michaël Molinari, Olivier Arnould
Rapporteurs / Rapporteuses : Laurent Lebrun, Christophe Baley

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

En raison des enjeux écologiques actuels, l'utilisation de ressources lignocellulosiques dans l'élaboration de matériaux composites suscite actuellement un intérêt grandissant. Au-delà des applications traditionnelles (papier, panneaux composites, textiles…), les ressources lignocellulosiques constituent une alternative durable aux ressources fossiles pour la production de biocarburant ou d'agrocomposites à base de fibres végétales. Ainsi, si l'on souhaite optimiser les performances de ces nouveaux composites, il est nécessaire de mieux connaitre les propriétés de la fibre et par conséquent réaliser une étude multi-échelle des propriétés physicochimiques et mécaniques des fibres, des polymères constitutifs et de leurs interactions. Dans ce cadre, le premier objectif de la thèse a été de mesurer à l'échelle nanométrique le gradient de propriétés mécaniques et physicochimiques de coupes de fibres végétales par l'intermédiaire de deux techniques utilisant le microscope à force atomique (AFM) visant à cartographier les propriétés nanomécaniques et les caractéristiques spectrales en IR. Puis, pour mieux comprendre le rôle des polymères et de leurs interactions sur les propriétés de la fibre, des systèmes bioinspirés, composés des trois principales classes de polymères pariétaux et de complexité croissante ont été élaborés en veillant à introduire des interactions covalentes et non covalentes entre les polymères, et plus particulièrement entre la lignine et les polysaccharides (cellulose, hémicelluloses).