Analyse et modélisation multifractales des interactions ondes-turbulence-biologie dans un lac urbain
Auteur / Autrice : | Yacine Mezemate |
Direction : | Daniel Schertzer |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et Techniques de l'Environnement |
Date : | Soutenance le 23/12/2014 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Sciences, Ingénierie et Environnement (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Eau, Environnement et Systèmes Urbains - Laboratoire Eau Environnement et Systèmes Urbains / LEESU |
Jury : | Président / Présidente : Michel Crépon |
Examinateurs / Examinatrices : Daniel Schertzer, Ioulia Tchiguirinskaia, Céline Bonhomme, George Fitton, Rob E. Uittenbogaard | |
Rapporteur / Rapporteuse : François Schmitt, Frans Van De Ven |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les recherches en milieu lacustre ont généralement porté sur les grands lacs naturels et les barrages. Or les défis scientifiques que présentent les lacs urbains sont nombreux du fait de leur faible profondeur et de leur extension .Le travail que nous présentons ici s'inscrit dans le cadre du projet Petits Lacs Urbains Mesures Modèles Multi-Echelles (PLUMMME), projet financé par la région Île-de-France (programme DIM R2DS).Ce projet a permis l'équipement du lac de Créteil en mesures à haute résolution. Ce sont ces mesures physiques et biologiques qui sont essentiellement exploitées dans cette thèse, parfois en comparaison avec celles du lac du Bourget. La première étape de cette thèse a été ainsi d'enrichir la base de données déjà disponible. Pour cela, nous avons mis en place une station de mesure en continu (capteurs de température, chlorophylle et luminosité, données météorologique telles que vitesse du vent et température atmosphérique), ainsi que deux chaînes de mesures comportant différents capteurs. Des campagnes de mesures spécifiques ont également été réalisées pour l'étude de hydrodynamique à l'aide d'un courantomètre de type Acoustic Doppler Velocimeter (ADV), ainsi qu'un profileur de type Acoustic Doppler Current Profilers (ADCP) à deux points différents du lac (point central et point du rejet d'eaux pluviales). L'analyse des différents champs montre que le lac présente des stratifications avec une période d'une semaine. Nous avons également identifié les modes d'oscillations des ondes internes lorsque ces dernières se produisent sous l'effet du vent. L'analyse spectrale a permis de mettre en évidence une première propriété d'invariance d'échelle des différents champs mesurés. Les différents processus physique (turbulence, stratification, écoulement proche de la paroi) opérant le long de la colonne d'eau ont également été caractérisés. L'analyse spectrale ne permet pas de mettre en évidence le caractère intermittent des fluctuations des champs mesurés, ces dernières peuvent par contre être analysées à l'aide des techniques multifractales. Dans cette thèse nous avons montré que lorsqu'il existe une dépendance entre deux champs, celle ci est multi-échelle. L'utilisation du modèle multifractal universel (UM) a permis de quantifier le degré de cette dépendance. La qualité de l'estimation des paramètres UM dépend fortement de celle de l'invariance d'échelle observée: des séries temporelles présentant des tendances ne respectent pas cette invariance. Les effets de ces dernières sur l'estimation des paramètres UM peuvent être éliminés en utilisant la méthode de décomposition empirique modale dans l'espace physique. L'utilisation des données du champ de vitesse mesuré à l'aide de l'ADCP montre que, les pentes des spectres suivent un profil logarithmique selon la verticale, cela met en évidence que différents processus physiques opèrent le long de la colonne d'eau. Nous montrons également que l'hydrodynamique du lac est fortement perturbée à petite échelle au point du rejet d'eau pluviale. La dernière partie de la thèse examine ce que notre analyse à petites échelles apporte aux modèles numériques. Nous montrons que si les modèles déterministes arrivent à reproduire certains phénomènes à grande échelle, ils sont dans l'incapacité de représenter correctement les fluctuations à petites échelles, donc les processus physiques correspondants. L'analyse multifractale montre que la variabilité des champs physiques présente une forte intermittence. Le fait que la majorité des interactions biologiques/chimiques se produisent à petites échelles souligne la nécessité d'améliorer qualitativement les modèles de fermeture des équations de Navier-Stokes. Enfin, nous montrons que les fonctions de structures, observables statistiques de base en turbulence, ne permettent pas de caractériser de façon unique les champs non conservatifs et donc correspondent à des simulations multifractales non identiques