Amélioration de la localisation 3D de données laser terrestre à l'aide de cartes 2D ou modèles 3D
Auteur / Autrice : | Fabrice Monnier |
Direction : | Nicolas Paparoditis |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et Technologies de l'Information Géographique |
Date : | Soutenance le 19/12/2014 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution (Saint-Mandé, Val de Marne) - MATIS |
Jury : | Président / Présidente : François Goulette |
Examinateurs / Examinatrices : Nicolas Paparoditis, Bruno Vallet, Raouf Ben-Jemaa, Yves Paturel | |
Rapporteur / Rapporteuse : Laurent Trassoudaine, Pierre Grussenmeyer |
Mots clés
Résumé
Les avancées technologiques dans le domaine informatique (logiciel et matériel) et, en particulier, de la géolocalisation ont permis la démocratisation des modèles numériques. L'arrivée depuis quelques années de véhicules de cartographie mobile a ouvert l'accès à la numérisation 3D mobile terrestre. L'un des avantages de ces nouvelles méthodes d'imagerie de l'environnement urbain est la capacité potentielle de ces systèmes à améliorer les bases de données existantes 2D comme 3D, en particulier leur niveau de détail et la diversité des objets représentés. Les bases de données géographiques sont constituées d'un ensemble de primitives géométriques (généralement des lignes en 2D et des plans ou des triangles en 3D) d'un niveau de détail grossier mais ont l'avantage d'être disponibles sur de vastes zones géographiques. Elles sont issues de la fusion d'informations diverses (anciennes campagnes réalisées manuellement, conception automatisée ou encore hybride) et peuvent donc présenter des erreurs de fabrication. Les systèmes de numérisation mobiles, eux, peuvent acquérir, entre autres, des nuages de points laser. Ces nuages laser garantissent des données d'un niveau de détail très fin pouvant aller jusqu'à plusieurs points au centimètre carré. Acquérir des nuages de points laser présente toutefois des inconvénients :- une quantité de données importante sur de faibles étendues géographiques posant des problèmes de stockage et de traitements pouvant aller jusqu'à plusieurs Téraoctet lors de campagnes d'acquisition importantes- des difficultés d'acquisition inhérentes au fait d'imager l'environnement depuis le sol. Les systèmes de numérisation mobiles présentent eux aussi des limites : en milieu urbain, le signal GPS nécessaire au bon géoréférencement des données peut être perturbé par les multi-trajets voire même stoppé lors de phénomènes de masquage GPS liés à la réduction de la portion de ciel visible pour capter assez de satellites pour en déduire une position spatiale. Améliorer les bases de données existantes grâce aux données acquises par un véhicule de numérisation mobile nécessite une mise en cohérence des deux ensembles. L'objectif principal de ce manuscrit est donc de mettre en place une chaîne de traitements automatique permettant de recaler bases de données géographiques et nuages de points laser terrestre (provenant de véhicules de cartographies mobiles) de la manière la plus fiable possible. Le recalage peut se réaliser de manière différentes. Dans ce manuscrit, nous avons développé une méthode permettant de recaler des nuages laser sur des bases de données, notamment, par la définition d'un modèle de dérive particulièrement adapté aux dérives non-linéaires de ces données mobiles. Nous avons également développé une méthode capable d'utiliser de l'information sémantique pour recaler des bases de données sur des nuages laser mobiles. Les différentes optimisations effectuées sur notre approche nous permettent de recaler des données rapidement pour une approche post-traitements, ce qui permet d'ouvrir l'approche à la gestion de grands volumes de données (milliards de points laser et milliers de primitives géométriques).Le problème du recalage conjoint a été abordé. Notre chaîne de traitements a été testée sur des données simulées et des données réelles provenant de différentes missions effectuées par l'IGN