Thèse soutenue

Intégration du retour d'expérience pour une stratégie de maintenance dynamique

FR  |  
EN
Auteur / Autrice : Rony Rozas
Direction : Patrice Aknin
Type : Thèse de doctorat
Discipline(s) : Signal, Image, Automatique
Date : Soutenance le 19/12/2014
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Génie des Réseaux de Transport Terrestre et Informatique Avancé (Noisy-le-grand, Seine-Saint-Denis) - Génie des Réseaux de Transport Terrestres et Informatique Avancée / IFSTTAR/GRETTIA
Jury : Président / Présidente : Antoine Grall
Examinateurs / Examinatrices : Patrice Aknin, Laurent Bouillaut, Philippe Weber
Rapporteurs / Rapporteuses : Philippe Leray

Résumé

FR  |  
EN

L'optimisation de stratégies de maintenance est un sujet primordial pour un grand nombre d'industriels. Il s'agit d'établir un plan de maintenance qui garantisse des niveaux de sécurité, de sûreté et de fiabilité élevé avec un coût minimum et respectant d'éventuelles contraintes. Le nombre de travaux grandissant sur l'optimisation de paramètres de maintenance et notamment sur la planification d'actions préventives de maintenance souligne l'intérêt de ce problème. Un grand nombre d'études sur la maintenance repose sur une modélisation du processus de dégradation du système étudié. Les Modèles Graphiques Probabilistes (MGP) et particulièrement les MGP Markoviens (MGPM) fournissent un cadre de travail pour la modélisation de processus stochastiques complexes. Le problème de ce type d'approche est que la qualité des résultats est dépendante de celle du modèle. De plus, les paramètres du système considéré peuvent évoluer au cours du temps. Cette évolution est généralement la conséquence d'un changement de fournisseur pour les pièces de remplacement ou d'un changement de paramètres d'exploitation. Cette thèse aborde le problème d'adaptation dynamique d'une stratégie de maintenance face à un système dont les paramètres changent. La méthodologie proposée repose sur des algorithmes de détection de changement dans un flux de données séquentielles et sur une nouvelle méthode d'inférence probabiliste spécifique aux réseaux bayésiens dynamiques. D'autre part, les algorithmes proposés dans cette thèse sont mis en place dans le cadre d'un projet d'étude avec Bombardier Transport. L'étude porte sur la maintenance du système d'accès voyageurs d'une nouvelle automotrice destiné à une exploitation sur le réseau ferré d'Ile-de-France. L'objectif général est de garantir des niveaux de sécurité et de fiabilité importants au cours de l'exploitation du train