Thèse soutenue

L’optimization par trellis-énergetique

FR  |  
EN
Auteur / Autrice : Bangalore Ravi Kiran
Direction : Jean Serra
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 31/10/2014
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - Ligm
Jury : Président / Présidente : Hugues Talbot
Examinateurs / Examinatrices : Jean Serra, Frank R. Schmidt, M.H.F. Wilkinson, Jesus A. Angulo, Jean Cousty
Rapporteur / Rapporteuse : Philippe Salembier, Jocelyn Chanussot

Résumé

FR  |  
EN

La segmentation hiérarchique est une méthode pour produire des partitions qui représentent une même image de manière de moins en moins fine. En même temps, elle sert d'entrée à la recherche d'une partition optimale, qui combine des extraits des diverses partitions en divers endroits. Le traitement hiérarchique des images est un domaine émergent en vision par ordinateur, et en particulier dans la communauté qui étudie les images hyperspectrales et les SIG, du fait de son capacité à structurer des données hyper-dimensionnelles. Le chapitre 1 porte sur les deux concepts fondamentaux de tresse et de treillis énergétique. La tresse est une notion plus riche que celle de hiérarchie de partitions, en ce qu'elle incorpore, en plus, des partitions qui ne sont pas emboîtées les unes dans les autres, tout en s'appuyant globalement sur une hiérarchie. Le treillis énergétique est une structure mixte qui regroupe une tresse avec une énergie, et permet d'y définir des éléments maximaux et minimaux. Lorsqu'on se donne une énergie, trouver la partition formée de classes de la tresse (ou de la hiérarchie) qui minimise cette énergie est un problème insoluble, de par sa complexité combinatoriale. Nous donnons les deux conditions de h-croissance et de croissance d'échelle, qui garantissent l'existence, l'unicité et la monotonie des solutions, et conduisent à un algorithme qui les détermine en deux passes de lecture des données. Le chapitre 2 reste dans le cadre précédent, mais étudie plus spécifiquement l'optimisation sous contrainte. Il débouche sur trois généralisations du modèle Lagrangien. Le chapitre 3 applique l'optimisation par treillis énergétique au cas de figure où l'énergie est introduite par une « vérité terrain », c'est à dire par un jeu de dessins manuel, que les partitions optimales doivent serrer au plus près. Enfin, le chapitre 4 passe des treillis énergétiques à ceux des courbes de Jordan dans le plan euclidien, qui définissent un modèle continu de segmentations hiérarchiques. Il permet entre autres de composer les hiérarchies avec diverses fonctions numériques