Thèse soutenue

Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi

FR  |  
EN
Auteur / Autrice : Guillaume Costeseque
Direction : Régis Monneau
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 12/09/2014
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - Cermics
Jury : Président / Présidente : Ludovic Leclercq
Examinateurs / Examinatrices : Régis Monneau, Fabio Camilli, Jean-Patrick Lebacque, Markos Papageorgiou
Rapporteurs / Rapporteuses : Paola Goatin, Chris Tampere, Said Mammar

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail porte sur la modélisation et la simulation du trafic routier sur un réseau. Modéliser le trafic sur une section homogène (c'est-à-dire sans entrée, ni sortie) trouve ses racines au milieu du XXème siècle et a généré une importante littérature depuis. Cependant, la prise en compte des discontinuités des réseaux comme les jonctions, n'a attiré l'attention du cercle scientifique que bien plus récemment. Pourtant, ces discontinuités sont les sources majeures des congestions, récurrentes ou non, qui dégradent la qualité de service des infrastructures. Ce travail se propose donc d'apporter un éclairage particulier sur cette question, tout en s'intéressant aux problèmes d'échelle et plus particulièrement au passage microscopique-macroscopique dans les modèles existants. La première partie de cette thèse est consacrée au lien existant entre les modèles de poursuite microscopiques et les modèles d'écoulement macroscopiques. Le passage asymptotique est assuré par une technique d'homogénéisation pour les équations d'Hamilton-Jacobi. Dans une deuxième partie, nous nous intéressons à la modélisation et à la simulation des flux de véhicules au travers d'une jonction. Le modèle macroscopique considéré est bâti autour des équations d'Hamilton-Jacobi. La troisième partie enfin, se concentre sur la recherche de solutions analytiques ou semi-analytiques, grâce à l'utilisation de formules de représentation permettant de résoudre les équations d'Hamilton-Jacobi sous de bonnes hypothèses. Nous nous intéressons également dans cette thèse, à la classe générique des modèles macroscopiques de trafic de second ordre, dits modèles GSOM