Thèse soutenue

Deux tests de détection de rupture dans la copule d'observations multivariées

FR  |  
EN
Auteur / Autrice : Tom Rohmer
Direction : Ivan Kojadinovic
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 02/10/2014
Etablissement(s) : Pau
Ecole(s) doctorale(s) : École doctorale sciences exactes et leurs applications (Pau, Pyrénées Atlantiques ; 1995-)

Résumé

FR  |  
EN

Il est bien connu que les lois marginales d'un vecteur aléatoire ne susent pas à caractériser sa distribution. Lorsque les lois marginales du vecteur aléatoire sont continues, le théorème de Sklar garantit l'existence et l'unicité d'une fonction appelée copule, caractérisant la dépendance entre les composantes du vecteur. La loi du vecteur aléatoire est parfaitement dénie par la donnée des lois marginales et de la copule. Dans ce travail de thèse, nous proposons deux tests non paramétriques de détection de ruptures dans la distribution d'observations multivariées, particulièrement sensibles à des changements dans la copule des observations. Ils améliorent tous deux des propositions récentes et donnent lieu à des tests plus puissants que leurs prédécesseurs pour des classes d'alternatives pertinentes. Des simulations de Monte Carlo illustrent les performances de ces tests sur des échantillons de taille modérée. Le premier test est fondé sur une statistique à la Cramér-von Mises construite à partir du processus de copule empirique séquentiel. Une procédure de rééchantillonnage à base de multiplicateurs est proposée pour la statistique de test ; sa validité asymptotique sous l'hypothèse nulle est démontrée sous des conditions de mélange fort sur les données. Le second test se focalise sur la détection d'un changement dans le rho de Spearman multivarié des observations. Bien que moins général, il présente de meilleurs résultats en terme de puissance que le premier test pour les alternatives caractérisées par un changement dans le rho de Spearman. Deux stratégies de calcul de la valeur p sont comparées théoriquement et empiriquement : l'une utilise un rééchantillonnage de la statistique, l'autre est fondée sur une estimation de la loi limite de la statistique de test.