Thèse soutenue

Etude des partenaires protéiques associés aux homodimères et aux hétérodimères des récepteurs couplés aux protéines G

FR  |  
EN
Auteur / Autrice : Abla Benleulmi-Chaachoua
Direction : Ralf Jockers
Type : Thèse de doctorat
Discipline(s) : Biologie, Biochimie
Date : Soutenance le 14/05/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Signalisations et réseaux intégratifs en biologie (Le Kremlin-Bicêtre, Val-de-Marne ; 2000-2015)
Partenaire(s) de recherche : Equipe de recherche : Institut Cochin (Paris ; 2002-....)
Laboratoire : Institut Cochin
Jury : Président / Présidente : Hervé Daniel
Examinateurs / Examinatrices : Ralf Jockers, Hervé Daniel, Eleni Tzavara, Philippe Marin, Philippe De Lagrange, Hervé Enslen
Rapporteurs / Rapporteuses : Eleni Tzavara, Philippe Marin

Résumé

FR  |  
EN

La mélatonine est une neuro-hormone secrétée par la glande pinéale pour réguler les rythmes circadiens, le sommeil, la physiologie de la rétine, la reproduction saisonnière et diverses fonctions neuronales. La mélatonine exerce ses fonctions en se liant à deux récepteurs membranaires appelés MT1 et MT2 qui appartiennent à la famille des récepteurs couplés aux protéines G (RCPG). Les RCPG sont connus pour former des homo- et hétérodimères mais la pertinence physiologique de ces complexes reste à démontrer. Plusieurs études montrent que la fonction de ces complexes ne se limite pas à la régulation des protéines G hétérotrimériques, mais inclue également la régulation d'autres protéines comme les transporteurs et les canaux ioniques. Dans ce travail, nous rapportons la formation d'hétérodimères MT1/MT2 dans les photorécepteurs de la rétine de souris et nous montrons que l’augmentation de la sensibilité de ces cellules à la lumière par la mélatonine requiert l'activation de la voie Gq/PLC/PKC qui est spécifique de l’hétéromère. Cette étude confirme alors la pertinence physiologique de l’hétérodimérisation des récepteurs de la mélatonine.Nous avons ensuite cherché à identifier de nouveaux partenaires de MT1 et MT2 en effectuant plusieurs cribles protéomiques et génétiques et un interactome de 378 protéines a pu être construit. L'analyse bioinformatique a révélé la présence de plusieurs protéines présynaptiques (canaux calciques voltage-dépendants Cav2.2, SNAP25, Synapsin et Munc-18) dans l'interactome MT1. Parmi ces partenaires, nous avons montré dans les cellules CHO que le récepteur MT1 interagit avec la protéine Cav2.2 et inhibe l’entrée du calcium d'une manière indépendante de la stimulation par l’agoniste, ce qui suggère un rôle régulateur de MT1 dans la libération des neurotransmetteurs.Un autre partenaire caractérisé est le transporteur de la dopamine DAT. L'interaction physique de DAT avec les récepteurs de la mélatonine diminue l’expression de DAT à la surface cellulaire et diminue l'absorption de la dopamine dans les cellules HEK293. La pertinence physiologique de ces observations a été appuyée par l’augmentation de la recapture de la dopamine dans les synaptosomes du striatum de souris knock-out pour les récepteurs de la mélatonine. En conclusion, ce rapport montre que la construction des interactomes des RCPG offre de nouvelles perspectives pour la découverte de nouvelles fonctions de ces récepteurs, comme les fonctions rétiniennes et neuronales des récepteurs de la mélatonine dans notre étude. La formation de complexes RCPG/RCPG, RCPG/canaux ioniques et RCPG/transporteurs peut avoir un effet fonctionnel réciproque au niveau de l’activité du récepteur et de ces partenaires, mettant ainsi en évidence de nouveaux mécanismes moléculaires de cross-talk cellulaire.