Thèse soutenue

Décompositions parcimonieuses pour l'analyse avancée de données en spectrométrie pour la Santé

FR  |  
EN
Auteur / Autrice : Jérémy Rapin
Direction : Jean-Luc Starck
Type : Thèse de doctorat
Discipline(s) : Génie informatique, automatique et traitement du signal
Date : Soutenance le 19/12/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'intégration des systèmes et des technologies (Gif-sur-Yvette, Essonne ; 2001-....)
Jury : Président / Présidente : Pascal Larzabal
Examinateurs / Examinatrices : Jean-Luc Starck, Pascal Larzabal, Christian Jutten, Gabriel Peyré, Anthony Larue, David Brie, Pierre Vandergheynst
Rapporteurs / Rapporteuses : Christian Jutten, Gabriel Peyré

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La séparation de sources en aveugle (SSA) vise à rechercher des signaux sources inconnus et mélangés de manière inconnue au sein de plusieurs observations. Cette approche très générique et non-supervisée ne fournit cependant pas nécessairement des résultats exploitables. Il est alors nécessaire d’ajouter des contraintes, notamment physiques, afin de privilégier la recherche de sources ayant une structure particulière. La factorisation en matrices positives (non-negative matrix factorization, NMF) qui fait plus précisément l’objet de cette thèse recherche ainsi des sources positives observées au travers de mélanges linéaires positifs.L’ajout de davantage d’information reste cependant souvent nécessaire afin de pouvoir séparer les sources. Nous nous intéressons ainsi au concept de parcimonie qui permet d’améliorer le contraste entre celles-ci tout en produisant des approches très robustes, en particulier au bruit. Nous montrons qu’afin d’obtenir des solutions stables, les contraintes de positivité et la régularisation parcimonieuse doivent être appliqués de manière adéquate. Aussi, l’utilisation de la parcimonie dans un espace transformé potentiellement redondant, permettant de capturer la structure de la plu- part des signaux naturels, se révèle difficile à appliquer au côté de la contrainte de positivité dans l’espace direct. Nous proposons ainsi un nouvel algorithme de NMF parcimonieuse, appelé nGMCA (non-negative Generalized Morphological Component Analysis), qui surmonte ces difficultés via l’utilisation de techniques de calcul proximal. Des expérimentations sur des données simulées montrent que cet algorithme est robuste à une contamination par du bruit additif Gaussien, à l’aide d’une gestion automatique du paramètre de parcimonie. Des comparaisons avec des algorithmes de l’état-de-l’art en NMF sur des données réalistes montrent l’efficacité ainsi que la robustesse de l’approche proposée.Finalement, nous appliquerons nGMCA sur des données de chromatographie en phase liquide - spectrométrie de masse (liquid chromatography - mass spectrometry, LC-MS). L’observation de ces données montre qu’elles sont contaminées par du bruit multiplicatif, lequel détériore grandement les résultats des algorithmes de NMF. Une extension de nGMCA conçue pour prendre en compte ce type de bruit à l’aide d’un a priori non-stationnaire permet alors d’obtenir d’excellents résultats sur des données réelles annotées.