Thèse soutenue

Éliminations dans les corps valués

FR  |  
EN
Auteur / Autrice : Silvain Rideau
Direction : Élisabeth BouscarenThomas Scanlon
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 09/12/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Jury : Président / Présidente : Antoine Chambert-Loir
Examinateurs / Examinatrices : Élisabeth Bouscaren, Thomas Scanlon, Antoine Chambert-Loir, François Loeser, Dugald Macpherson, Frank-Olaf Wagner
Rapporteur / Rapporteuse : François Loeser, Dugald Macpherson

Résumé

FR  |  
EN

Cette thèse est une contribution à la théorie des modèles des corps valués. Les principaux résultats de ce texte sont des résultats d’éliminations des quantificateurs et des imaginaires. Le premier chapitre contient une étude des imaginaires dans les extensions finies de Qp. On y démontre que ces corps ainsi que leurs ultraproduits éliminent les imaginaires dans le langage géométrique. On en déduit un résultat de rationalité uniforme pour les fonctions zêta associées aux familles de relations d’équivalences définissables dans les extensions finies de Qp. La motivation première du deuxième chapitre est l’étude de W(F_p^alg) en tant que corps valué analytique de différence. Plus généralement, on démontre un théorème d’élimination des quantificateurs de corps dans le langage RV pour les corps valués analytiques -Henséliens de caractéristique nulle. On donne aussi une axiomatisation de la théorie de W(F_p^alg) ainsi qu’une preuve qu’elle est NIP. Dans le troisième chapitre, on prouve la densité des types définissables dans certains enrichissements d’ACVF. On en déduit un critère pour l’élimination des imaginaires et la propriété d’extension invariante. Ce chapitre contient aussi des résultats abstraits sur les ensembles extérieurement définissables dans les théories NIP. Dans le dernier chapitre, les résultats du chapitre précédent sont appliqués à VDF, la modèle complétion des corps valués munis d’une dérivation qui préserve la valuation, pour obtenir l’élimination des imaginaires dans le langage géométrique ainsi que la densité des types définissables et la propriété d’extension invariante. Ce chapitre contient aussi des considérations sur les fonctions définissables, les types et les groupes définissables dans VDF.