Thèse soutenue

Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse relative

FR  |  
EN
Auteur / Autrice : Tony Février
Direction : Benjamin GrailleFrançois Dubois
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 05/12/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Jury : Président / Présidente : Pierre Sagaut
Examinateurs / Examinatrices : Benjamin Graille, François Dubois, Pierre Sagaut, Francis Filbet, Frédéric Coquel, Frédéric Lagoutière
Rapporteurs / Rapporteuses : Francis Filbet, Frédéric Coquel

Résumé

FR  |  
EN

Cette thèse introduit et étudie une nouvelle classe de schémas de Boltzmann sur réseau appelés schémas à vitesse relative. Les schémas de Boltzmann sur réseau visent à approcher des problèmes de nature macroscopique en mimant la dynamique microscopique d’équations cinétiques du type Boltzmann. L’algorithme calcule des distributions de particules évoluant au travers de deux phases de transport et de relaxation, les particules se déplaçant en les noeuds d’un réseau cartésien en espace. Les schémas de Boltzmann à plusieurs temps de relaxation (ou schéma MRT de d’Humières), dont la relaxation im- plique un ensemble de moments combinaison linéaire polynomiale des distributions, constituent le cadre initial de la thèse. Les schémas à vitesse relative sont une extension de ces schémas de d’Humières. Ils sont inspirés du schéma cascade de Geier apportant davantage de stabilité que les schémas de d’Hu- mières pour des régimes peu visqueux des équations de Navier-Stokes. La différence avec ces schémas se situe au niveau de la relaxation : elle utilise un ensemble de moments relatifs à un paramètre champ de vitesse fonction du temps et de l’espace. Cette différence se matérialise par une matrice de tran- sition des moments fixes (les schémas de d’Humières correspondent à un paramètre champ de vitesse nul) aux moments mobiles. La structure algébrique de cette matrice est étudiée. Le schéma cascade est ensuite traduit comme un schéma à vitesse relative pour un nouvel ensemble de polynômes définissant les moments. L’étude de la consistance des schémas à vitesse relative par la méthode des équations équivalentes est un point central de la thèse. Les équations limites pour un nombre arbitraire de dimen- sions et de vitesses sont dérivées et illustrées sur des exemples tels que le D2Q9 pour les équations de Navier-Stokes. Ces équations équivalentes sont également un outil pour prédire la stabilité des schémas grâce à l’analyse des termes de diffusion et dispersion. La dernière partie traite de la stabilité suivant le choix du paramètre champ de vitesse. Nous sommes particulièrement intéressés en les deux choix de paramètre nul (d’Humières) et la vitesse du fluide (cascade). Le schéma D2Q9 pour les équations de Navier-Stokes est étudié numériquement par une méthode de Von Neumann puis appuyé sur des cas tests non linéaires. La stabilité des schémas relatifs à la vitesse du fluide est dépendante du choix des polynômes définissant les moments. L’amélioration la plus notable se produit si les polynômes du schéma cascade sont choisis. Nous étudions enfin les stabilités théorique et numérique d’un schéma bidimensionnel minimal. Le contexte physique est la simulation d’une équation d’advection diffusion linéaire. Le choix de la vitesse d’advection comme paramètre champ de vitesse annule certains termes de dispersion des équations équivalentes contrairement aux schémas de d’Humières. Ceci se traduit par un meilleur comportement en termes de stabilité pour de grandes vitesses, appuyé théoriquement à l’aide d’une notion de stabilité à poids.