Caractérisation physico-chimique de bionanocomposites à base d'ADN et de minéraux argileux nano-fibreux : applications biologiques
Auteur / Autrice : | Fidel Antonio Castro Smirnov |
Direction : | Bernard Lopez, Oscar Edgar Rodriguez Hoyos |
Type : | Thèse de doctorat |
Discipline(s) : | Biophysique |
Date : | Soutenance le 15/10/2014 |
Etablissement(s) : | Paris 11 en cotutelle avec Instituto superior de Tecnologias Y Ciencias Aplicadas de Cuba |
Ecole(s) doctorale(s) : | École doctorale Gènes, Génomes, Cellules (Gif-sur-Yvette, Essonne ; 2000-2015) |
Partenaire(s) de recherche : | Equipe de recherche : Intégrité du génome et cancers (Villejuif, Val-de-Marne ; 2010-....) |
Laboratoire : Stabilité Génétique et Oncogenèse | |
Jury : | Président / Présidente : Claude Forano |
Examinateurs / Examinatrices : Bernard Lopez, Oscar Edgar Rodriguez Hoyos, Claude Forano, Cédric Boissière, Eduardo Ruiz-Hitzky, Eric Le Cam, Pilar Aranda | |
Rapporteur / Rapporteuse : Claude Forano, Cédric Boissière |
Résumé
Parmi les différents minéraux argileux, la sépiolite, qui est un silicate fibreux naturel, est un potentiel nano-transporteur prometteur pour le transfert non-viral de biomolécules. Il a en effet été montré que la sépiolite interagissait avec des molécules biologiques telles que les lipides, les polysaccharides et les protéines. Dans ce travail, nous démontrons que la sépiolite interagit également efficacement avec différents types de molécules d'ADN (génomique, plasmidique, oligonucléotides simple et double brin), et nous présentons la première étude détaillée sur les mécanismes d'interaction entre la sépiolite et l'ADN, ainsi qu’une caractérisation physico-chimique de bionanocomposites ADN-sepiolite. Une analyse spectroscopique a montré tout d’abord que l’interaction de l'ADN avec la sépiolite était plus forte en présence de polycations, la valence de ces derniers accroissant le rendement d’absorption, et deuxièmement, que l'ADN ainsi adsorbé pouvait être récupéré avec un rendement modulé par la présence d’EDTA, la structure de l'ADN et son activité biologique étant conservées. Par spectroscopie infrarouge à transformée de Fourier (FTIR) nous avons identifié les groupes silanol externes comme les principaux sites d'interaction avec l'ADN. Nous avons ensuite prouvé qu'il est possible d'utiliser la sépiolite pour extraire l'ADN de bactéries, pour la purification de l'ADN et pour la purification de toute contamination bactérienne. En combinant la microscopie à fluorescence, la microscopie électronique à transmission (MET), la vidéo-microscopie et l’analyse par cytométrie en flux (FACS), nous avons montré que la sépiolite peut être spontanément internalisée dans des cellules de mammifère par le biais de deux voies, l’endocytose et la macropinocytose. En tant que preuve de concept, nous montrons que la sépiolite est capable de transférer de manière stable l'ADN de plasmide dans des bactéries et des cellules de mammifères. Il a également été prouvé qu’en incubant des bactéries avec des bionanocomposites ADN-sepiolite, initialement préparés en présence d'une faible concentration en cations divalents et avec de la sépiolite traitée aux ultrasons (sSep), il était possible d'augmenter l'efficacité de la transformation bactérienne 20 à 30 fois par rapport aux méthodes basées sur l'«effet Yoshida». En outre, nous montrons que l'efficacité du transfert de gènes par la sépiolite peut être optimisée : l'utilisation de sSep et l'exposition à la chloroquine augmentent d’un facteur 100 et 2, respectivement, l’efficacité de transfection. Ces résultats ouvrent la voie à l'utilisation de bionanocomposites à base de sépiolite comme de nouveaux potentiels nano-transporteurs hybrides potentiels, à la fois pour la thérapie génique et le développement de nouveaux modèles biologiques en sciences fondamentales et appliquées.