Thèse soutenue

Développement de couches minces de matériaux SRF pour augmenter les performances des structures SRF au-delà du Nb massif

FR  |  
EN
Auteur / Autrice : Anne-Marie Valente-Feliciano
Direction : Claire AntoineJean Delayen
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 30/09/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : École doctorale Physique de la région parisienne (....-2013)
Partenaire(s) de recherche : Laboratoire : Thomas Jefferson National Accelerator Facility (Newport News, Virginie)
Jury : Président / Présidente : Marin Chabot
Examinateurs / Examinatrices : Claire Antoine, Jean Delayen, Marin Chabot, Pascal Briois, Vincenzo Palmieri
Rapporteurs / Rapporteuses : Pascal Briois, Vincenzo Palmieri

Résumé

FR  |  
EN

La réduction du cout de construction et d’exploitation des futurs accélérateurs d particules, a grande et petite échelles, dépend du développement de nouveaux matériaux pour les surfaces actives des structures supraconductrices en radiofréquence (SRF). Les propriétés SRF sont essentiellement un phénomène de surface vu que la profondeur de pénétration (profondeur de pénétration de London, λ) des micro-ondes (RF) est typiquement de l’ordre de 20 à 400 nm en fonction du matériau. Lorsque les procédés de préparation de surface sont optimises, la limite fondamentale du champ RF que les surfaces SRF peuvent supporter est le champ RF maximum, Hc₁, au-delà duquel le flux magnétique commence à pénétrer la surface du supraconducteur. Le matériau le plus utilise pour des applications SRF est le niobium (Nb) massif, avec un champ Hc₁ de l’ordre de 170 mT, qui permet d’atteindre un champ accélérateur de moins de 50 MV/m. Les meilleures perspectives d’amélioration des performances des cavités SRF sont liées à des matériaux et méthodes de production produisant la surface SRF critique de façon contrôlée. Dans cette optique, deux avenues sont explorées pour utiliser des couches minces pour augmenter les performances des structures SRF au-delà du Nb massif, en monocouche ou en structures multicouches Supraconducteur-Isolant-Supraconducteur (SIS) : La première approche est d’utiliser une couche de Nb déposée sur du cuivre (Nb/Cu) à la place du Nb massif. La technologie Nb/Cu a démontré, au cours des années, être une alternative viable pour les cavités SRF. Toutefois, les techniques de dépôt communément utilisées, principalement la pulvérisation magnétron, n’ont jusqu’à présent pas permis de produire des surfaces SRF adaptées aux performances requises. Le récent développement de techniques de dépôt par condensation énergétiques, produisant des flux d’ions énergétiques de façon contrôlée (telles que des sources d’ions ECR sous ultravide) ouvrent la voie au développement de films SRF de grand qualité. La corrélation entre les conditions de croissance, l’énergie des ions incidents, la structure et les performances RF des films produits est étudiée. Des films Nb avec des propriétés proches du Nb massif sont ainsi produits. La deuxième approche est basée sur un concept qui propose qu’une structure multicouche SIS déposée sur une surface de Nb peut atteindre des performances supérieures à celles du Nb massif. Bien que les matériaux supraconducteurs à haute Tc aient un champ Hc₁ inférieur à celui du Nb, des couches minces de tels matériaux d’une épaisseur (d) inférieure à la profondeur de pénétration voient une augmentation de leur champ parallèle Hc₁ résultant au retardement de la pénétration du flux magnétique. Cette surcouche peut ainsi permettre l’écrantage magnétique de la surface de Nb qui est donc maintenue dans l’état de Meissner à des champs RF bien plus importants que pour le Nb massif. La croissance et performance de structures multicouches SIS basées sur des films de NbTiN, pour le supraconducteur, et de l’AlN, pour le diélectrique, sont étudiées. Les résultats de cette étude montrent la faisabilité de cette approche et le potentiel qui en découle pour l’amélioration des performances SRF au-delà du Nb massif.