Thèse soutenue

Problèmes d’interfaces et couplages singuliers dans les systèmes hyperboliques : analyse et analyse numérique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Nina Aguillon
Direction : Frédéric Lagoutière
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 29/09/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) - Laboratoire de Mathématiques d'Orsay
Jury : Président / Présidente : Claire Chainais-Hillairet
Examinateurs / Examinatrices : Frédéric Lagoutière, Claire Chainais-Hillairet, Franck Boyer, François Bouchut, Sylvie Benzoni-Gavage, Frédéric Rousset
Rapporteurs / Rapporteuses : Franck Boyer, François Bouchut

Résumé

FR  |  
EN

Dans ce travail, nous nous intéressons à deux problèmes de la théorie des systèmes hyperboliques faisant intervenir des interfaces. Le premier concerne des modèles de couplages entre un fluide compressible et une particule ponctuelle et le second concerne la capture numérique précise des chocs, ces discontinuités qui apparaissent dans les solutions des systèmes hyperboliques.Sur la première thématique, nous commençons par introduire les différents modèles, dans lesquels la particule et le fluide interagissent à travers une force de frottement qui tend à rapprocher leurs vitesses. Le couplage est singulier car il fait intervenir le produit d’une fonction discontinue par une mesure de Dirac. On peut toutefois définir précisément le système en voyant la particule comme une interface à travers laquelle des relations liant les propriétés du fluide et celle de la particule sont imposées. Lorsque le fluide suit une équation de Burgers, nous démontrons la convergence d’une classe de schéma numérique, et nous obtenons l’existence d’une solution au problème de Cauchy pour une donnée initiale à variation totale bornée. Dans le cas plus complexe où le fluide est décrit par les équa- tions d’Euler isothermes, on prouve l’existence et l’unicité d’une solution autosemblable au problème de Riemann lorsque la particule est immobile. Des simulations numériques sont également présentées.La dernière partie de la thèse est consacrée à la construction de schémas non diffusifs pour les systèmes hyperboliques. Ces schémas, de type volumes finis, sont construits pour être exact lorsque la donnée initiale est un choc isolé. Ils sont basé sur une reconstruction discontinue de la solution au début de chaque itération en temps, dans le but de reconstituer des chocs à l’intérieur de certaines cellules du maillage. Cette stratégie mène à des schémas très peu diffusifs qui, lorsque l’opérateur de reconstruction est bien choisi, approchent correctement les solutions de cas tests problématiques (chocs lents, chocs forts, réflexions pour la dynamique des gaz, chocs non classiques pour les systèmes qui ne sont pas vraiment non linéaires).