Thèse soutenue

Adaptation des mappings entre systèmes d'organisation de la connaissance du domaine biomédical

FR  |  
EN
Auteur / Autrice : Julio Cesar Dos Reis
Direction : Chantal Reynaud
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 24/10/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
Centre de recherche : Centre de recherche public Henri Tudor (Luxembourg)
Jury : Président / Présidente : Stéfan Jacques Darmoni
Examinateurs / Examinatrices : Chantal Reynaud, Stéfan Jacques Darmoni, Frank Van Harmelen, Nathalie Aussenac-Gilles, Cédric Pruski, Christine Froidevaux, Erhard Rahm
Rapporteurs / Rapporteuses : Frank Van Harmelen, Nathalie Aussenac-Gilles

Résumé

FR  |  
EN

Les systèmes d'information biomédicaux actuels reposent sur l'exploitation de données provenant de sources multiples. Les Systèmes d'Organisation de la Connaissance (SOC) permettent d'expliciter la sémantique de ces données, ce qui facilite leur gestion et leur exploitation. Bénéficiant de l'évolution des technologies du Web sémantique, un nombre toujours croissant de SOCs a été élaboré et publié dans des domaines spécifiques tels que la génomique, la biologie, l'anatomie, les pathologies, etc. Leur utilisation combinée, nécessaire pour couvrir tout le domaine biomédical, repose sur la définition de mises en correspondance entre leurs éléments ou mappings. Les mappings connectent les entités des SOCs liées au même domaine via des relations sémantiques. Ils jouent un rôle majeur pour l'interopérabilité entre systèmes, en permettant aux applications d'interpréter les données annotées avec différents SOCs. Cependant, les SOCs évoluent et de nouvelles versions sont régulièrement publiées de façon à correspondre à des vues du domaine les plus à jour possible. La validité des mappings ayant été préalablement établis peut alors être remis en cause. Des méthodes sont nécessaires pour assurer leur cohérence sémantique au fil du temps. La maintenance manuelle des mappings est une possibilité lorsque le nombre de mappings est restreint. En présence de SOCs volumineux et évoluant très rapidement, des méthodes les plus automatiques possibles sont indispensables. Cette thèse de doctorat propose une approche originale pour adapter les mappings basés sur les changements détectés dans l'évolution de SOCs du domaine biomédical. Notre proposition consiste à comprendre précisément les mappings entre SOCs, à exploiter les types de changements intervenant lorsque les SOCs évoluent, puis à proposer des actions de modification des mappings appropriées. Nos contributions sont multiples : (i) nous avons réalisé un travail expérimental approfondi pour comprendre l'évolution des mappings entre SOCs; nous proposons des méthodes automatiques (ii) pour analyser les mappings affectés par l'évolution de SOCs, et (iii) pour reconnaître l'évolution des concepts impliqués dans les mappings via des patrons de changement; enfin (iv) nous proposons des techniques d'adaptation des mappings à base d'heuristiques. Nous proposons un cadre complet pour l'adaptation des mappings, appelé DyKOSMap, et un prototype logiciel. Nous avons évalué les méthodes proposées et le cadre formel avec des jeux de données réelles contenant plusieurs versions de mappings entre SOCs du domaine biomédical. Les résultats des expérimentations ont démontré l'efficacité des principes sous-jacents à l'approche proposée. La maintenance des mappings, en grande partie automatique, est de bonne qualité.