Thèse soutenue

Étude théorique des oxydes de métaux de transition Pb2FeMoO6 et ZrO2
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yan Zhang
Direction : Vincent Ning Ji
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 26/09/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Institut : Institut de chimie moléculaire et des matériaux d’Orsay (Orsay, Essonne ; 2006-....)
Jury : Président / Présidente : Pascale Foury-Leylekian
Examinateurs / Examinatrices : Pascale Foury-Leylekian, Manuel François, Jean-Michel Sprauel, Wang Xuanguo
Rapporteurs / Rapporteuses : Manuel François, Jean-Michel Sprauel

Résumé

FR  |  
EN

Ces dernières années, les oxydes de métaux de transition ont suscité de grands intérêts du point de vue fondamental et technologique. A cet égard, nous nous concentrons sur deux types d'oxydes : le première, le Perovskite double Pb2FeMoO6, avec un potentiel d'application sur des appareils magnétorésistances et spintroniques ; le deuxième, la zircone ZrO2 avec de excellentes propriétés mécaniques et diélectriques pour être utilisée dans les domaines de matériaux structuraux et fonctionnels. Dans la présente étude, nous utilisons la méthode ab-initio (first-principles calculation) pour étudier les détails des orbites décomposés des structures électroniques et des propriétés magnétiques du Pb2FeMoO6 massif de structure parfaite, massif avec des défauts et en structure de plaque. En même temps, les détails des orbites décomposés des structures électroniques, les propriétés mécaniques, dynamiques et diélectriques de six phases de la ZrO2 (cubique, tétragonale, monoclinique, orthorhombique I (Pbca), orthorhombique II (Pnma) et (Pca21)) ont également été étudiés. D'abord nous allons faire les calculs ab-initio sur les propriétés structurales, électroniques et magnétiques de double pérovskite Pb2FeMoO6 massif avec structure parfaite, massif avec défauts et en structure de plaque. La densité des états orbitaux décomposés montre le champ cristallin octaédrique des six atomes d'oxygène autour de métal de transition (des Fe ou des Mo) et divise les cinq états dégénérés des atomes libres de Fe ou Mo dans un états triplement dégénéré t2g (dxy, dyz et dzx) avec une énergie plus faible et dans un états doublement dégénéré eg (dz2 et dx2-y2) avec une énergie plus élevée. La nature semi-métalliques et les propriétés de transport complètes (100%) de spin de polarisation de Pb2FeMoO6 massif et en structures de plaque reflètent un grand potentiel d’application dans les dispositifs magnéto-résistifs et spintroniques. Le caractère semi-métallique est maintenu pour le composé Pb2FeMoO6 désordonné contenant d’antisites Fe(Mo), de lacunes de VFe, VO ou VPb, alors qu'il disparaît quand les antisites Mo(Fe), les échanges entre Fe-Mo ou les lacunes de VMo sont présents même la concentration de défauts est réduite jusqu'à C = 6,25%. Ainsi, les antisites Mo(Fe), les échanges entre Fe-Mo ou les lacunes de VMo doivent être évités afin de préserver le caractère semi-métallique du composé Pb2FeMoO6 et donc être utilisables dans des dispositifs magnéto-résistifs et spintroniques.Ensuite, basé sur la rigidité élastique constantes individuelle calculée Cij de six phases de ZrO2, les propriétés élastiques et mécaniques des agrégats polycristallins ont été prédits. Nous avons donc examiné le caractère isolant de la phase cubique/tétragonale de ZrO2 sous forme film avec différentes combinaisons et différentes épaisseurs possibles dans des plans avec des faibles indices de Miller [(001), (110) et (111)] (pour la phase cubique) et [(001), (100), (110), (101) et (111)] pour la phase tétragonale. Il se trouve que pour les différentes combinaisons et épaisseurs possibles dans ces trois / cinq plans avec faibles indices de Miller, seulement ZrO2-terminé sous forme d’un film orienté dans le plan (110)/(100) et O-terminé sous forme d’un film orienté (111)/(101) des phases cubique/tétragonale de ZrO2 maintiennent le caractère isolant même les épaisseurs d’empilement est réduit jusqu'à deux et trois couches atomiques. Puisque cubique et tétragonale ZrO2 ont grande anisotropie élastique, comme un exemple, le stress et l'énergie de déformation densité ont été calculées pour tous {hkl} -oriented grains d'un film ZrO2 cubique polycristallin.