Dosimétrie Monte Carlo personnalisée pour la planification et l’évaluation des traitements de radiothérapie interne : développement et application à la radiothérapie interne sélective (SIRT)
Auteur / Autrice : | Alice Petitguillaume |
Direction : | Didier Franck |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 25/09/2014 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | École doctorale Particules, Noyaux, Cosmos (Paris ; 2009-2015) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d’évaluation de la dose interne (IRSN) (Fontenay-aux-Roses ; 2017-....) - Laboratoire d'évaluation de la dose interne |
Jury : | Président / Présidente : Elias Khan |
Examinateurs / Examinatrices : Didier Franck, Elias Khan, Etienne Garin, Loïc Lenoir de Carlan, Jean-François Chatal, Marcel Ricard | |
Rapporteurs / Rapporteuses : Etienne Garin, Loïc Lenoir de Carlan |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Techniques médicales en plein essor suscitant d’importants espoirs thérapeutiques, les radiothérapies internes vectorisées (RIV) consistent à administrer un radiopharmaceutique pour traiter sélectivement les tumeurs. A l’heure actuelle, l’activité injectée au patient est généralement standardisée. Cependant, afin d’établir des relations dose-effet robustes et d’optimiser le traitement en préservant au mieux les tissus sains, une dosimétrie personnalisée doit être réalisée, à l’image des pratiques cliniques existant en radiothérapie externe. Dans ce cadre, l’objectif de la thèse était de développer, à l’aide du logiciel OEDIPE, une méthode de dosimétrie personnalisée reposant sur des calculs Monte Carlo directs. La méthode mise au point permet de calculer la distribution tridimensionnelle des doses absorbées en fonction de l’anatomie du patient, définie à l’aide d’images TDM ou IRM, ainsi que de la biodistribution de l’activité spécifique au patient, définie à partir de données d’émission TEMP ou TEP. Des aspects radiobiologiques, tels que les différences de radiosensibilité et de vitesse de réparation entre les tissus sains et les lésions tumorales, ont également été intégrés par l’intermédiaire du modèle linéaire-quadratique. Cette méthode a été appliquée à la radiothérapie interne sélective (SIRT) qui consiste à injecter des 90Y-microsphères pour traiter sélectivement les cancers hépatiques inopérables. Les distributions des doses absorbées et doses biologiques efficaces (BED) ainsi que les doses biologiques efficaces équivalentes uniformes (EUD) aux lésions hépatiques ont été calculées à partir des distributions d’activité de l’étape d’évaluation aux 99mTc-MAA pour 18 patients traités à l’hôpital européen Georges Pompidou. Ces résultats ont été comparés aux méthodes classiques utilisées en clinique et l’intérêt d’une dosimétrie précise et personnalisée pour la planification de traitement a été étudié. D’une part, la possibilité d’augmenter l’activité de manière personnalisée a été mise en évidence par le calcul de l’activité maximale injectable au patient en fonction de critères de tolérance donnés aux organes à risque. D’autre part, l’utilisation des grandeurs radiobiologiques a également permis d’évaluer l’apport potentiel de protocoles fractionnés en SIRT. L’outil développé peut donc être utilisé comme aide à l’optimisation des plans de traitement. En outre, une étude a été initiée en vue d’améliorer la reconstruction des données post-traitement de la TEMP-90Y. L’évaluation à partir de ces données des doses délivrées lors du traitement pourra permettre, d’une part, de prédire le contrôle tumoral et d’anticiper le risque de toxicité aux tissus sains et, d’autre part, d’établir des relations dose-effet précises pour ces traitements.