Problèmes aux limites pour les systèmes elliptiques
Auteur / Autrice : | Sebastian Stahlhut |
Direction : | Pascal Auscher |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 30/09/2014 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) |
Jury : | Président / Présidente : Guy David |
Examinateurs / Examinatrices : Pascal Auscher, Guy David, Andreas Rosén, Herbert Koch, Pierre Portal | |
Rapporteur / Rapporteuse : Andreas Rosén, Herbert Koch |
Mots clés
Résumé
Dans cette thèse, nous étudions des problèmes aux limites pour les systèmes elliptiques sous forme divergence avec coefficients complexes dans L^{infty}. Nous prouvons des estimations a priori, discutons de la solvabilité et d'extrapolation de la solvabilité. Nous utilisons une transformation via des équations Cauchy-Riemann généralisées due à P. Auscher, A. Axelsson et A. McIntosh. On peut résoudre les équations Cauchy-Riemann généralisées via la semi-groupe engendré par un opérateur différentiel perturbé d'ordre un de type Dirac. A l'aide du semi-groupe, nous étudions la théorie L^{p} avec une discussion sur la bisectorialité, le calcul fonctionnel holomorphe et les estimations hors-diagonales pour des opérateurs dans le calcul fonctionnel. En particulier, nous développons une théorie L^{p}-L^{q} pour des opérateurs dans le calcul fonctionnel d'opérateur de type Dirac perturbé. Les problèmes de Neumann, Régularité et Dirichlet se formulent avec des estimations quadratiques et des estimations pour la fonction maximale nontangentielle. Cela conduit à à démontrer de telles estimations pour le semi-groupe d'opérateur de Dirac Pour cela, nous utilisons les espaces Hardy associés et les identifions dans certains cas avec des sous-espaces des espaces de Hardy et Lebesgue classiques. Nous obtenons enfin des estimations a priori pour les problème aux limites via une extension utilisant des espaces de Sobolev associés. Nous utilisons les estimations a priori pour une discussion sur la solvabilité des problèmes aux limites et montrer un théorème d'extrapolation de la solvabilité.