Thèse soutenue

Simulations Numériques de Transferts Interdépendants d’Electrons et de Protons dans les Protéines
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Natacha Gillet
Direction : Isabelle DemachyVicent Moliner
Type : Thèse de doctorat
Discipline(s) : Chimie Physique
Date : Soutenance le 21/07/2014
Etablissement(s) : Paris 11 en cotutelle avec Universitat Jaume I (Castellón de la Plana, Espagne)
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
Jury : Président / Présidente : Ally Aukauloo
Examinateurs / Examinatrices : Isabelle Demachy, Vicent Moliner, Ally Aukauloo, Elise Dumont, Rodolphe Vuilleumier, Sergio Marti, Iñaki Tuñón
Rapporteurs / Rapporteuses : Elise Dumont, Rodolphe Vuilleumier

Résumé

FR  |  
EN

Les processus d’oxydo-réduction impliquant des molécules organiques se retrouvent très fréquemment dans les protéines. Ces réactions comprennent généralement des transferts d’électrons et de protons qui se traduisent dans le bilan réactionnel par des transferts couplés proton-électron, des transferts simples d’hydrogène, d’hydrure... Une des principales méthodes pour élucider ces mécanismes est fournie par l'évaluation de grandeurs thermodynamiques et cinétiques. Expérimentalement, ces informations sont cependant obtenues avec une résolution temporelle souvent limitée à la milli/microseconde. Les simulations numériques présentées ici complètent, à des échelles de temps plus courtes (femto, pico, nanosecondes), ces données expérimentales. Il existe de nombreuses méthodes de simulations dédiées à l’étude de mécanismes redox dans les protéines combinant la description quantique des réactifs (QM) nécessaire à l’étude des changements d’états électroniques et la description classique de l’environnement (MM), l'échantillonnage de conformations se faisant grâce à des simulations de dynamique moléculaire (MD). Ces méthodes diffèrent par la qualité de la description du mécanisme réactionnel et le coût en temps de calcul. L’objectif de cette thèse est d’étudier les mécanismes de différents processus impliquant des transferts de protons et d’électrons en recherchant à chaque fois les outils adaptés. Elle comporte trois parties : i) l’évaluation de potentiels redox de cofacteurs quinones ; ii) la description du mécanisme d’oxydation du L-lactate dans l’enzyme flavocytochrome b2 ; iii) la décomposition d’un transfert formel d’hydrure entre deux flavines au sein de la protéine EmoB. Dans le cas du calcul des potentiels redox, nous utilisons une méthode notée QM+MM où la description électronique se fait en phase gaz au niveau DFT tandis que les simulations de MD s’effectuent classiquement. Nous appliquons l’approximation de réponse linéaire (ARL) pour décrire la réponse du système aux étapes de changement d’état de protonation ou d’oxydation de la fonction quinone ce qui aboutit au calcul du potentiel redox théorique. Nous avons ainsi pu établir une courbe de calibration des résultats théoriques en fonction des données expérimentales, confirmant la validité de l'ARL pour les cofacteurs quinones dans l’eau. La méthode a été étendue à la protéine MADH mais les limites de l’ARL ont été atteintes du fait des fluctuations importantes de l’environnement. L’étude de l’oxydation du L-lactate en pyruvate repose sur le calcul de surfaces d'énergie libre au niveau AM1/MM. Ces surfaces sont obtenues à l’aide de simulations de MD biaisées puis corrigées à l’aide de calculs d’énergies DFT. Différents chemins de réactions impliquant les transferts d’un proton et d’un hydrure du substrat vers une histidine et une flavine respectivement ont pu être identifiés. Ces transferts peuvent être séquentiels ou concertés suivant la conformation du site actif ou les mutations effectuées. Les surfaces concordent avec les effets observés expérimentalement. Les barrières obtenues restent cependant supérieures à celles attendues ouvrant la voie à d’autres simulations. La décomposition du mécanisme de transfert d’hydrure en transfert d’électron et d’atome d’hydrogène s’appuie sur de longues simulations classiques et des calculs d’énergies au niveau DFT contrainte (cDFT)/MM. La DFT contrainte permet de décrire les états diabatiques associés au transfert d’électron à différents stades du transfert d’hydrogène. En appliquant l’ARL, nous pouvons construire des paraboles correspondant aux états diabatiques et déterminer la séquence des évènements de transfert d'électron et d’hydrogène. La comparaison entre milieux protéique et aqueux nous a permis d’établir que le rôle de la protéine dans le transfert d'hydrure global est de bloquer le transfert d’électron en l’absence du transfert d’hydrogène empêchant ainsi la formation de flavines semi-réduites.