Thèse soutenue

Stéréophotométrie non-calibrée de surfaces non-Lambertiennes. Application à la reconstruction de surface de colonies microbiennes

FR  |  
EN
Auteur / Autrice : Khrystyna Kyrgyzova
Direction : Michaël Aupetit
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 22/07/2014
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : Laboratoire d'intégration des systèmes et des technologies (Gif-sur-Yvette, Essonne ; 2001-....)
Jury : Président / Présidente : Anne Vilnat
Examinateurs / Examinatrices : Michaël Aupetit, Anne Vilnat, Gilles Gesquière, Adrien Bartoli, Lorène Allano, Olivier Aubreton, Guillaume Perrin
Rapporteur / Rapporteuse : Gilles Gesquière, Adrien Bartoli

Résumé

FR  |  
EN

La thèse est dédiée au problème de la stéréophotométrie non-Lambertienne sans connaissance a priori sur les conditions d’illumination et son application aux images de boîte de Pétri. Pour obtenir une bonne reconstruction de surfaces non-Lambertiennes, il est proposé de traiter une séquence d’entrée en deux étapes: premièrement il faut supprimer les effets spéculaires et obtenir ainsi des images de surface ’pseudo-Lambertienne’. Ensuite dans une deuxième étape à partir de ces images une reconstruction stéréophotométrique Lambertienne sans aucune information préalable sur les directions d’illumination est effectuée. Dans ce travail nous proposons deux méthodes originales respectivement pour la suppression de spécularités et la reconstruction de surface sans information a priori. Les méthodes proposées sont appliquées pour la caractérisation des colonies microbiennes.La spécularités est un effet optique lié à la nature physique complexe des objets. Il est utile pour la perception humaine des objets 3D mais il gêne le processus de traitement automatique d’images. Pour pouvoir appliquer le modèle Lambertien à la stéréophotométrie, les spécularités doivent être supprimées des images d’entrée. Nous proposons donc une méthode originale pour la correction des zones spéculaires adaptée pour une reconstruction ultérieure. L’algorithme proposé est capable de détecter les spécularités comme des valeurs anormalement élevées d’intensité dans une image de la séquence d’entrée, et de les corriger en utilisant les informations des autres images de la séquence et une fonction de correction continue. Cette méthode permet de faire la suppression des spécularités en préservant toutes les autres particularités de distribution de lumière qui sont importantes pour la reconstruction de surface.Après nous proposons une technique de reconstruction stéréophotométrique de surface Lambertienne sans connaissance a priori sur l’illumination. Le modèle mis en œuvre consiste en quatre composantes, deux composantes (albédo et normales) permettent de d´écrire des propriétés de surface et deux autres (intensités des sources de lumière et leurs directions) décrivent illumination. L’algorithme proposé de reconstruction utilise le principe de l’optimisation alternée. Chaque composante du modèle est trouvée itérativement en fixant toutes les variables sauf une et en appliquant des contraintes de structures, valeurs et qualité pour la fonction d’optimisation. Un schéma original de résolution permet de séparer les différents types d’information inclus dans les images d’entrée. Grâce à cette factorisation de matrices, la reconstruction de surface est faite sans connaissance préalable sur les directions de lumière et les propriétés de l’objet reconstruit. L’applicabilité de l’algorithme est prouvée pour des donnés artificielles et des images de bases publiques pour lesquelles la vérité terrain sur les surfaces des objets est disponible.La dernière partie de la thèse est dédiée à l’application de la chaine complète proposée pour le traitement d’images de boîte de Pétri. Ces images sont obtenues en utilisant les sources de lumières complexes qui sont supposées être inconnues pour le processus de reconstruction. L’évaluation de surfaces de colonies microbiennes s’est révélée être une étape importante pour l'analyse visuelle et automatique des colonies. La chaine proposée est efficace pour ce type de données et permet de compléter les informations d'images par de la surface 3D.