Investigations numériques de certains modèles mathématiques du signal d’IRM de diffusion
Auteur / Autrice : | Hang Tuan Nguyen |
Direction : | Cyril Poupon, Jing-Rebecca Li, Denis Grebenkov |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 29/01/2014 |
Etablissement(s) : | Paris 11 |
Ecole(s) doctorale(s) : | Ecole doctorale Sciences et Technologies de l'Information, des Télécommunications et des Systèmes (Orsay, Essonne ; 2000-2015) |
Partenaire(s) de recherche : | Laboratoire : Unité d'Imagerie par Résonance Magnétique et de Spectroscopie (Gif-sur-Yvette ; ....-2020) - Laboratoire d'Imagerie et de Spectroscopie |
Jury : | Examinateurs / Examinatrices : Cyril Poupon, Jing-Rebecca Li, Denis Grebenkov, Valerij G. Kiselev, Antoine Lejay, Rachid Deriche, Ludovic de Rochefort |
Rapporteur / Rapporteuse : Valerij G. Kiselev, Antoine Lejay |
Mots clés
Résumé
Ma thèse porte sur la relation entre la microstructure des tissus et le signal macroscopique d'imagerie par résonance magnétique de diffusion (IRMd). Les estimations des paramètres de tissus provenant de signaux mesurées expérimentalement est très important dans l'IRMd. En dépit d'une histoire de la recherche intensive dans ce domaine depuis longtemps, de nombreux aspects de ce problème inverse restent mal compris. Nous avons proposé et testé une solution approchée à ce problème, dans lequel le signal d'IRMd est d'abord approché par un modèle macroscopique appropriée, puis le paramètres effectifs de ce modèle sont estimés.Nous avons étudié deux modèles macroscopiques du signal d'IRMd. Le premier est le modèle Karger qui suppose une certaine forme de (macroscopique) diffusion de compartiments multiples et les échanges inter-compartiment, mais est soumis à la restriction d'impulsion étroite sur les impulsions de gradient de champ magnétique diffusion codant. Le deuxième est un modèle ODE de plusieurs aimantations compartiment obtenus à partir de l'homogénéisation mathématique de l'équation de Bloch-Torrey, qui n'est pas soumis à la restriction d'impulsion étroite.Tout d'abord, nous avons étudié la validité de ces modèles macroscopiques en comparant le signal d'IRMd proposée par le modèle Karger et le modèle ODE avec le signal d'IRMd de diffusion simulé sur certaines geometries de tissu relativement complexes en résolvant l'équation de Bloch-Torrey en cas de membranes semi-perméables cellule biologique. Nous avons conclu que la validité de ces deux modèles macroscopiques est limitée au cas où la diffusion dans chaque compartiment est effectivement gaussien et où l'échange inter-compartimentale peut être représenté par des termes cinétiques de premier ordre standard.Deuxièmement, en supposant que les conditions ci-dessus sur la diffusion compartimentale et l'échange inter-compartiment sont satisfaits, nous avons résolu le problème des moindres carrés associée à monter les paramètres du modèle Karger et du modèle ODE au signal simulé d'IRMd obtenu en résolvant l'équation de Bloch-Torrey microscopique. Parmi divers paramètres efficaces, nous avons examiné les fractions volumiques des compartiments intra-cellulaires et extra-cellulaires, la perméabilité de la membrane, la taille moyenne des cellules, la distance inter-cellulaire, ainsi que des coefficients de diffusion apparents. Nous avons commencé par étudier la faisabilité de la méthod des moindres carrés pour les deux groupes de geometries de tissu relativement simples. Pour le premier groupe, dans lequel les domaines sont constitués de cellules identiques ou sphériques de taille variable noyées dans l'espace extra-cellulaire, nous avons conclu que problème d'estimation de paramètres peut être résolu robuste, même en présence de bruit. Dans le second groupe, on a considéré les cellules cylindriques parallèles, qui peuvent être couverts par une couche de membrane d'épaisseur, et noyés dans l'espace extra-cellulaire. Dans ce cas, la qualité de l'estimation des paramètres dépendant fortement de la quantité de la structure cellulaire est allongée dans la direction du gradient. Dans la pratique, l'orientation des cellules allongées n'est pas de priori connue, de plus, les tissus biologiques peuvent contenir des structures allongées orientées de manière aléatoire et également en mélange avec d'autres éléments compacts (par exemple, les axones et les cellules gliales). Cette situation a été étudiée numériquement sur notre domaine le plus complexe dans lequel les couches de cellules cylindriques dans différentes directions sont mélangés avec des couches de cellules sphériques. Nous avons vérifié que certains paramètres peuvent encore être estimés assez fidèlement tandis que l'autre reste inaccessible. Dans tous les cas considérés, le modèle ODE a fourni des estimations plus précises que le modèle Karger.