Régularisations de faible complexité pour les problèmes inverses
Auteur / Autrice : | Samuel Vaiter |
Direction : | Gabriel Peyré |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et informatique appliquées aux sciences sociales (miass) |
Date : | Soutenance le 10/07/2014 |
Etablissement(s) : | Paris 9 |
Ecole(s) doctorale(s) : | Ecole doctorale SDOSE (Paris) |
Partenaire(s) de recherche : | Laboratoire : Centre de recherche en mathématiques de la décision (Paris) - Centre de recherche en mathématiques de la décision (Paris) |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse se consacre aux garanties de reconstruction et de l’analyse de sensibilité de régularisation variationnelle pour des problèmes inverses linéaires bruités. Il s’agit d’un problème d’optimisation convexe combinant un terme d’attache aux données et un terme de régularisation promouvant des solutions vivant dans un espace dit de faible complexité. Notre approche, basée sur la notion de fonctions partiellement lisses, permet l’étude d’une grande variété de régularisations comme par exemple la parcimonie de type analyse ou structurée, l’anti-Parcimonie et la structure de faible rang. Nous analysons tout d’abord la robustesse au bruit, à la fois en termes de distance entre les solutions et l’objet original, ainsi que la stabilité de l’espace modèle promu.Ensuite, nous étudions la stabilité de ces problèmes d’optimisation à des perturbations des observations. A partir d’observations aléatoires, nous construisons un estimateur non biaisé du risque afin d’obtenir un schéma de sélection de paramètre.