Thèse soutenue

FR
Auteur / Autrice : Marc Paul Renault
Direction : Adi Rosén
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance en 2014
Etablissement(s) : Paris 7
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)

Résumé

FR  |  
EN

Les algorithmes en ligne fonctionnent dans un contexte où l'entrée est révélé au fur et à mesure du temps; chaque morceau révélé est appelé une demande. Après réception de chaque demahde, les algorithmes en ligne doivent prendre une action avant que la prochaine demande soit révélée, c'est-à-dire que les algorithmes en ligne doivent prendre une décision irrévocable basée sur les demandes déjà révélées sans aucune connaissance des demandes à venir. Le but est d'optimiser une fonction de coût dépendante de l'entrée. L'analyse compétitive est la méthode standard utilisée pour analyser la qualité des algorithmes en ligne. Le ratio compétitif est un ratio de pire cas, parmi toutes les séquences de demande finis, entre la performance de l'algorithme en ligne contre un algorithme optimal hors ligne pour la même séquence. Le ratio compétitif compare la performance d'un algorithme sans aucune connaissance de l'avenir contre un algorithme en pleine connaissance de l'avenir. Car l'absence totale de connaissance de l'avenir n'est souvent pas une hypothèse raisonnable, des modèles ont été proposés, appelés algorithmes en ligne avec conseil, qui donne les algorithmes en ligne l'accès à une quantité quantifiée des connaissances de l'avenir. L'intérêt de ce modèle est d'examiner comment le ratio compétitif change en fonction de la quantité de conseil. Dans cette thèse, il est présenté des bornes supérieures et inférieures dans ce modèle pour des problèmes en ligne classiques, tels que le problème de la k-serveur, de bin packing, de dual bin packing (sac à dos multiple), d'ordonnancement sur m machines identiques, du tampon de réordonnancement et de la mise à jour de la liste.