Thèse soutenue

Méthodes de sous-espace de krylov élargis et préconditionneurs pour réduire les communications

FR  |  
EN
Auteur / Autrice : Sophie Moufawad
Direction : Laura Grigori
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 19/12/2014
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Jacques-Louis Lions
Jury : Examinateurs / Examinatrices : Frédéric Nataf, Nabil Nassif, Yvon Maday, Hassane Sadok, Jocelyne Ethel, Julien Langou

Résumé

FR  |  
EN

La performance d'un algorithme sur une architecture donnée dépend à la fois de la vitesse à laquelle le processeur effectue des opérations à virgule flottante (flops) et de la vitesse d'accès à la mémoire et au disque. Etant donné que le coût de la communication est beaucoup plus élevé que celui des opérations arithmétiques, celle-là forme un goulot d'étranglement dans les algorithmes numériques. Récemment, des méthodes de sous-espace de Krylov basées sur les méthodes 's-step' ont été développées pour réduire les communications. En effet, très peu de préconditionneurs existent pour ces méthodes, ce qui constitue une importante limitation. Dans cette thèse, nous présentons le préconditionneur nommé ''Communication-Avoiding ILU0'', pour la résolution des systèmes d’équations linéaires (Ax=b) de très grandes tailles. Nous proposons une nouvelle renumérotation de la matrice A ('alternating min-max layers'), avec laquelle nous montrons que le préconditionneur en question réduit la communication. Il est ainsi possible d’effectuer « s » itérations d’une méthode itérative préconditionnée sans communication. Nous présentons aussi deux nouvelles méthodes itératives, que nous nommons 'multiple search direction with orthogonalization CG' (MSDO-CG) et 'long recurrence enlarged CG' (LRE-CG). Ces dernières servent à la résolution des systèmes linéaires d’équations de très grandes tailles, et sont basées sur l’enrichissement de l’espace de Krylov par la décomposition du domaine de la matrice A.