Ordonnancement pour les nouvelles plateformes de calcul avec GPUs
Auteur / Autrice : | Florence Monna |
Direction : | Safia Kedad Sidhoum, Denis Trystram |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 25/11/2014 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Informatique de Paris 6 |
Jury : | Examinateurs / Examinatrices : Christophe Cérin, Rizos Sakellariou, Jacek Blazewicz, Alix Munier, Samuel Thibault, Grégory Mounié |
Mots clés
Résumé
De plus en plus d'ordinateurs utilisent des architectures hybrides combinant des processeurs multi-cœurs (CPUs) et des accélérateurs matériels comme les GPUs (Graphics Processing Units). Ces plates-formes parallèles hybrides exigent de nouvelles stratégies d'ordonnancement adaptées. Cette thèse est consacrée à une caractérisation de ce nouveau type de problèmes d'ordonnancement. L'objectif le plus étudié dans ce travail est la minimisation du makespan, qui est un problème crucial pour atteindre le potentiel des nouvelles plates-formes en Calcul Haute Performance.Le problème central étudié dans ce travail est le problème d'ordonnancement efficace de n tâches séquentielles indépendantes sur une plateforme de m CPUs et k GPUs, où chaque tâche peut être exécutée soit sur un CPU ou sur un GPU, avec un makespan minimal. Ce problème est NP-difficiles, nous proposons donc des algorithmes d'approximation avec des garanties de performance allant de 2 à (2q + 1)/(2q) +1/(2qk), q> 0, et des complexités polynomiales. Il s'agit des premiers algorithmes génériques pour la planification sur des machines hybrides avec une garantie de performance et une fin pratique. Des variantes du problème central ont été étudiées : un cas particulier où toutes les tâches sont accélérées quand elles sont affectées à un GPU, avec un algorithme avec un ratio de 3/2, un cas où les préemptions sont autorisées sur CPU, mais pas sur GPU, le modèle des tâches malléables, avec un algorithme avec un ratio de 3/2. Enfin, le problème avec des tâches dépendantes a été étudié, avec un algorithme avec un ratio de 6. Certains des algorithmes ont été intégré dans l'ordonnanceur du système xKaapi.