Équations d'onde nonlinéaires de type Klein-Gordon : application à la théorie f(R) de la gravitation
Auteur / Autrice : | Yue Ma |
Direction : | Philippe Le Floch |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques Appliquées |
Date : | Soutenance le 03/12/2014 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Jacques-Louis Lions |
Jury : | Examinateurs / Examinatrices : Alain Bachelot, Anil Zenginoglu, Jean-Marc Delort, Jérémie Szeftel, Abdelghani Zeghib |
Résumé
Cette thèse est composée de deux parties qui sont relativement indépendantes l’un de l’autre. Dans la première partie,une autre théorie de la gravitation que l’on appelle la gravité de f(R), est étudiée. Une première analyse mathématique est discutée sur cette théorie, y compris la formulation mathématique du problème de Cauchy, la discussion sur le choix du couplage, et la formulation mathématique des équations différentielles. Ce système des équations différentielles est de quatrième ordre et très impliqué. Pour pouvoir établir l’existence locale, une série de transformations et reformulation et introduites. Elles nous amènent à une formulation que l’on l’appelle la formulation conforme augmenté. Avec cette formulation, l’existence locale est établie. La deuxième partie est consacrée à l’analyse d’un type de système non-linéaire composé des équations d’onde et équations de Klein-Gordon. Ce type de système apparaît naturellement dans de nombreux modèles physiques: le plus important, l’équation d’Einstein couplé avec un champ scalaire réel du massif et le système de la formulation conforme augmentée de la théorie de f(R). La difficulté principale est le manque de la symétrie: un des champs de vecteur de Killing conforme de l’opérateur d’onde, le champ de vecteur de scaling S := t∂ t +r∂ r, n’est pas un champ de vecteur de Killing conforme de l’opérateur de Klein Gordon. Pour franchir cette difficulté, un nouveau cadre, appelé la méthode de feuilletage hyperboloïdal, est introduit. Avec ce cadre, nous pouvons encadrer les équations d’onde et les équations de Klein-Gordon dans le même cadre. Cela nous permet d’établir un résultat d’existence globale pour les données initiales petites et localisées dans un compact.