Thèse soutenue

Contribution à l'étude des réseaux de Petri généralisés

FR  |  
EN
Auteur / Autrice : Thomas Hujsa
Direction : Jean-Marc DelosmeAlix Munier-Kordon
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 29/10/2014
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Jury : Examinateurs / Examinatrices : Ahmed Bouajjani, José-Manuel Colom, Anne Bouillard, Béatrice Berard, Serge Haddad

Résumé

FR  |  
EN

De nombreux systèmes réels et applications, tels que les ateliers flexibles et systèmes embarqués, sont formés de tâches communicantes et sont modélisables par des réseaux de Petri pondérés. Le comportement de ces systèmes peut être vérifié sur leur modèle dès la phase de conception afin d'éviter les simulations post-conception coûteuses. Ces systèmes doivent satisfaire trois propriétés : vivacité, capacité bornée et réversibilité. La vivacité préserve la possibilité d'exécuter chaque tâche. La capacité bornée assure une quantité limitée de ressources. La réversibilité évite une initialisation coûteuse et permet de réinitialiser le système. Les méthodes d'analyse de ces propriétés ont généralement une complexité exponentielle. Dans cette thèse, nous étudions plusieurs sous-classes expressives des réseaux de Petri pondérés, soient les classes Fork-Attribution, Choice-Free, Join-Free et Equal-Conflict, pour lesquelles nous développons les premiers algorithmes polynomiaux garantissant vivacité, capacité bornée et réversibilité. Premièrement, nous apportons des transformations polynomiales qui préservent de nombreuses propriétés des réseaux de Petri pondérés et facilitent l'étude de leur comportement. Deuxièmement, nous utilisons ces transformations pour obtenir plusieurs conditions polynomiales suffisantes de vivacité pour les sous-classes considérées. Enfin, ces transformations simplifient l'étude de la réversibilité sous hypothèse de vivacité. Nous donnons plusieurs caractérisations et conditions polynomiales suffisantes de réversibilité pour les sous-classes étudiées. Nos conditions passent à l'échelle et sont aisément implémentables dans les systèmes réels.