Contribution à l'étude des réseaux de Petri généralisés
Auteur / Autrice : | Thomas Hujsa |
Direction : | Jean-Marc Delosme, Alix Munier-Kordon |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 29/10/2014 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Informatique, télécommunications et électronique de Paris (1992-...) |
Jury : | Examinateurs / Examinatrices : Ahmed Bouajjani, José-Manuel Colom, Anne Bouillard, Béatrice Berard, Serge Haddad |
Résumé
De nombreux systèmes réels et applications, tels que les ateliers flexibles et systèmes embarqués, sont formés de tâches communicantes et sont modélisables par des réseaux de Petri pondérés. Le comportement de ces systèmes peut être vérifié sur leur modèle dès la phase de conception afin d'éviter les simulations post-conception coûteuses. Ces systèmes doivent satisfaire trois propriétés : vivacité, capacité bornée et réversibilité. La vivacité préserve la possibilité d'exécuter chaque tâche. La capacité bornée assure une quantité limitée de ressources. La réversibilité évite une initialisation coûteuse et permet de réinitialiser le système. Les méthodes d'analyse de ces propriétés ont généralement une complexité exponentielle. Dans cette thèse, nous étudions plusieurs sous-classes expressives des réseaux de Petri pondérés, soient les classes Fork-Attribution, Choice-Free, Join-Free et Equal-Conflict, pour lesquelles nous développons les premiers algorithmes polynomiaux garantissant vivacité, capacité bornée et réversibilité. Premièrement, nous apportons des transformations polynomiales qui préservent de nombreuses propriétés des réseaux de Petri pondérés et facilitent l'étude de leur comportement. Deuxièmement, nous utilisons ces transformations pour obtenir plusieurs conditions polynomiales suffisantes de vivacité pour les sous-classes considérées. Enfin, ces transformations simplifient l'étude de la réversibilité sous hypothèse de vivacité. Nous donnons plusieurs caractérisations et conditions polynomiales suffisantes de réversibilité pour les sous-classes étudiées. Nos conditions passent à l'échelle et sont aisément implémentables dans les systèmes réels.