Thèse soutenue

Traitements conscient et non-conscient des régularités temporelles : Modélisation et neuroimagerie

FR  |  
EN
Auteur / Autrice : Catherine Wacongne
Direction : Stanislas Dehaene
Type : Thèse de doctorat
Discipline(s) : Neurosciences cognitives
Date : Soutenance le 07/07/2014
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Cerveau, cognition, comportement (Paris ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Neuroimagerie cognitive
Jury : Examinateurs / Examinatrices : Karl Friston, Floris Delange, Gustavo Deco, Lionel Neccache, Jean-Pierre Changeux

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Que va-t-il arriver ensuite ? Les stimuli naturels ont tendance à se suivre d'une façon prédictible. De nombreux domaines de la psychologie et des neurosciences ont montré que le cerveau et le comportement des humains sont sensibles à la structure temporelle des stimuli sensoriels et sont capables de l'exploiter de multiples façons : pour prendre des décisions appropriées, encoder l'information de façon efficace, réagir plus vite aux événements prédictibles ou encore orienter l'attention vers les stimuli inattendus. Si de nombreuses aires cérébrales sont sensibles aux régularités temporelles (RT), toutes ne semblent pas traiter les mêmes types de structure temporelle. L'accès conscient aux stimuli semble jouer un rôle important dans la capacité à apprendre certains types de RT. Cette thèse explore l'organisation hiérarchique du traitement des RT et les propriétés computationnelles propres à leur traitement conscient et non conscient en combinant un travail de modélisation et des expériences de neuroimagerie en magnétoencéphalographie et électroencéphalographie (MEEG). Un premier modèle neuronal basé sur les principes du codage prédictif reproduit les principales propriétés du traitement préattentif des sons purs dans le cortex auditif indexé par le potentiel évoqué appelé négativité d'incongruence (MMN). Une seconde étude en MEEG met en évidence l'existence d'une hiérarchie de processus prédictifs dans le cortex auditif. Enfin, un second modèle explore les contraintes et les nouvelles propriétés computationnelles qui sont associées à l'accès conscient des stimuli à un système de mémoire de travail capable de maintenir indéfiniment un nombre limité d'objets.