Thèse soutenue

Équations de réaction-diffusion et dynamique de populations face à un changement climatique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Hoang Hung Vo
Direction : Henri Berestycki
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 02/07/2014
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Centre d'analyse et de mathématique sociale
Jury : Examinateurs / Examinatrices : Jesus Ildefonso Diaz, François Hamel, Danielle Hilhorst, Grégoire Nadin, Benoît Perthame, Juncheng Wei

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Cette thèse traite de différents modèles issus de l'étude de la dynamique des populations devant faire face à un changement climatique. Notre but est d’atteindre deux objectifs ; le premier est d'étendre les travaux initiaux de Berestycki, Diekmann, Nagelkerke, Zegeling [5], ainsi que leurs développements ultérieurs (Berestycki et Rossi [18, 19]) ; le second est de dévoiler les aspects mathématiques profonds de ce modèle, en considérant de nouveaux problèmes, faisant intervenir une diffusion non-locale et non-linéaire. Le Chapitre 1 traite du cas d’un domaine cylindrique infini, dans l'espace entier, lorsque le terme de réaction est indépendant (resp. périodiquement dépendant) du temps. La nouveauté de ce travail est d’exprimer une condition globale dans le cadre de la théorie spectrale, afin de pouvoir supposer que l'environnement de la population est globalement défavorable à l'infini (au lieu de ponctuellement défavorable au voisinage de l'infini) comme dans [5, 18, 19]. Nous poursuivons l’étude de la concentration des espèces dans le domaine cylindrique lorsque le domaine extérieur est rendu extrêmement défavorable. Dans le Chapitre 2, nous nous concentrons sur les hypothèses permettant d’établir l'existence (vs l'inexistence) et l'unicité de la solution positive de l'équation elliptique semi-linéaire complète. Lorsque la divergence du terme de dérive est nulle, l'existence d'une solution positive peut être caractérisée à partir de l'amplitude du terme de dérive (sous des hypothèses adéquates de vitesse d’accroissement). L’étude du comportement pour des temps longs de l'équation parabolique nous amène à traiter le cas de coefficients éventuellement non bornés. Le Chapitre 3 étend les critères d'existence, d'inexistence et d'unicité explicités dans le deuxième chapitre aux équations quasi-linéaires impliquant un opérateur p-Laplacien. La principale difficulté rencontrée est que le principe du maximum fort semble difficile à appliquer ; nous devons alors utiliser une approche variationnelle pour obtenir un important principe de comparaison. Dans le Chapitre 4, nous étudions trois notions de valeurs propres principales généralisées pour les opérateurs non locaux sur des domaines bornés et non bornés (éventuellement ). Si le noyau est à support compact, nous pouvons également démontrer l'équivalence de ces valeurs propres sur domaine non borné. Nous étudions les limites des valeurs propres de l'opérateur de mise à l'échelle induit par la diffusion. Les résultats sont très dépendants du taux de mise à l'échelle. Dans le Chapitre 5, à la lumière des résultats obtenus dans le Chapitre 4, nous considérons l'équation d'évolution non locale et démontrons que la solution de l'équation d'évolution converge vers l’unique solution stationnaire, dont l'existence est directement conditionnée par le signe de la valeur propre principale généralisée. Cette convergence a lieu dans L^∞(ℝ^ℕ) et L^p(ℝ^ℕ), p≻0. Dans la deuxième partie de ce chapitre, nous examinons les limites singulières de l'unique solution positive des équations de remise à l’échelle. Nous montrons que l'unique solution de l'équation non locale approche – soit l'unique solution de l'équation locale de type KPP, soit une solution (qui peut ne pas être unique) de l’équation de réaction.