Thèse soutenue

Dynamique spatio-temporelle du néocortex : Quantification, analyse, modèles

FR  |  
EN
Auteur / Autrice : Lyle Muller
Direction : Alain Destexhe
Type : Thèse de doctorat
Discipline(s) : Neurosciences
Date : Soutenance le 04/06/2014
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Cerveau, cognition, comportement (Paris ; 1992-....)
Jury : Examinateurs / Examinatrices : Stéphane Charpier, Frédéric Chavane, Michelle Rudolph, Gabriel Peyre, G. Bard Ermentrout

Résumé

FR  |  
EN

Il a récemment été largement reconnu que la dynamique interne des réseaux de neurones pourraient jouer un rôle essentiel dans leur fonction. À cet régard, le "bruit synaptique" -- qui représente l'influence du réseau cortical sur les neurones individuels, et qui est une conséquence directe de la circuiterie récurrente massive du néocortex -- a récemment été identifié comme un facteur important qui affecte les propriétés intégratives des neurones. Cette activité affecte aussi l'évolution des réponses neuronales en fonction des changements d'états du cerveau, parfois en quelques secondes. Ces états d'activité générés en interne, qui résultent -- et eux-même influencent -- la plasticité des connexions synaptiques récurrentes, se combinent alors avec les entrées externes pour produire un riche répertoire de réponses aux stimuli sensoriels. Dans cette thèse, nous nous sommes concentrés sur le aspect spatial de ces dynamiques intrinsèques, en particulier la structure spatiale des oscillations corticales, à la fois dans le cas spontané et des réponses évoquées. Nous avons fait un examen approfondi de la littérature concernant la propagation d'ondes dans le thalamus et le cortex, et nous avons proposé un modèle de réseau neuronal pour examiner l'interaction entre les ondes de propagation et l'activité interne du réseau. Nous avons aussi mis en place de nouveaux outils pour la caractérisation de ce type d'activité spatio-temporelle à partir d'enregistrements multicanaux bruités. Le point culminant de ce travail est une démonstration, en utilisant les données d'imagerie par colorants voltage-sensitifs (VSD, "voltage-sensitive dye imaging") obtenues chez le singe éveillé, que la réponse de la population à un stimulus visuel se propage comme une onde sur une grande étendue du cortex visuel primaire. Ce résultat contredit une série d'études précédentes qui semblaient suggérer l'absence d'onde de propagation dans ce cas. Ensuite, nous avons commencé à étudier la structure spatio-temporelle du potentiel de champ local (``local field potential'') obtenu à partir d'enregistrements multi-électrodes chez l'homme et le singe, dans divers états cérébraux, pour répondre aux questions suscitées par l'étude initale en imagerie VSD chez le singe. En parallèle, nous avons étudié les caractéristiques de la structure de connectivité de plusieurs systèmes nerveux, en utilisant la théorie des graphes, pour identifier les aspects aléatoires ou structurés ("small-world") de cette connectivité. Le résultat principal est que, contrairement au consensus, la structure de connectivité est beaucoup plus proche d'une connectivité aléatoire. Les résultats de ces études de doctorat couvrent ainsi un grand spectre d'échelles en neurosciences, de modèles d'activité macroscopiques à des profils de connectivité microscopiques. J'espère sincèrement pouvoir exposer dans ces pages ces résultats de façon unifiée, dans le but de constituer une base pour la poursuite de ces travaux en neurosciences - une recherche de structure au sein de l'architecture interne du système nerveux central.