Thèse soutenue

Implication d'un point de vue évolutif de la méchanotransduction dans le développement

FR  |  
EN
Auteur / Autrice : Adrien Bouclet
Direction : Emmanuel Farge
Type : Thèse de doctorat
Discipline(s) : Biophysique moleculaire
Date : Soutenance le 17/06/2014
Etablissement(s) : Paris 5
Ecole(s) doctorale(s) : École doctorale Frontières de l'innovation en recherche et éducation (Paris ; 2006-....)
Partenaire(s) de recherche : Laboratoire : Physico-Chimie-Curie
Jury : Président / Présidente : Jean-Antoine Lepesant
Examinateurs / Examinatrices : Emmanuel Farge, Jean-Antoine Lepesant, Detlev Arendt, Suzannah Rutherford, Michael Koepf, Stéphane Ronsseray
Rapporteurs / Rapporteuses : Detlev Arendt, Suzannah Rutherford

Résumé

FR  |  
EN

Durant ma thèse je me suis intéressé à trois sujets différents connectés par la méchanotransduction au cours du développement. Mon intérêt principal étant porté sur les impacts évolutifs apportés par la méchanotransduction. Mais qu’est-ce que la méchanotransduction ? C’est la conversion d’un stimulus mécanique en une activité biochimique. Ces mécanismes sont présents dans bien des domaines : motilité des cellules, différentiation cellulaire, création de structures. Durant ma thèse je me suis principalement intéressé aux mécanismes de méchanotransduction liés à l’invagination du mésoderme chez la drosophile. Ce mouvement est l’un des tous premiers mouvements morphogénétique et fait partie d’une étape clé du développement qu’est la gastrulation mécanisme commun à toutes les espèces animales. Dans un premier temps je me suis focalisé cette invagination du mésoderme chez la Drosophile. Cette invagination est générée par des accumulations apicales de myosine qui vont entrainer une constriction apicale des cellules. Mon premier travail a été de comprendre et de modéliser ce mouvement en me basant sur le travail effectué dans le laboratoire. En effet il a été prouvé que les contraintes mécaniques entrainent directement l’invagination du mésoderme : par une indentation sur le mésoderme d’embryons incapables de réaliser une invagination on arrive à restaurer cette dernière. La modélisation que j’ai réalisée permet de montrer la plausibilité de réaliser un couplage bio-mécanique afin d’expliquer la formation de cette invagination. Le modèle est composé d’une chaine de cellules couplées mécaniquement entre elles par des jonctions adhérentes. Les cellules sont excitées individuellement par une force sinusoïdale leur taille va donc être modifiée. Grace au couplage certains comportements collectifs vont apparaitre. Pour les cellules associées à certaines conditions génétiques une fois que la taille seuil sera dépassée, la cellule va générer une force de constriction. Comme la cellule se constricte elle va déformer les cellules voisines qui seront plus à même de franchir la taille pallier. Une invagination globale va s’en suivre. Ce modèle reproduit quantitativement la dynamique de constriction des apex et permet de vérifier la possibilité d’obtenir une invagination à partir d’interactions mécaniques entre les cellules. Il permet met aussi en évidence l’importance de l’étude des comportements collectifs qui permettent par différents couplages. Dans une seconde partie j’ai effectué le parallèle entre l’invagination du mésoderme de la drosophile et l’initiation de l’épibolie du poisson zèbre en se focalisant sur le rôle de contraintes mécaniques développées par ces premiers mouvements morpho-génétiques. Ces premiers mouvements vont déterminer la création des différents feuillets et notamment la différentiation des cellules du mésoderme. Ces deux espèces montrent des mécanismes de méchanotransduction communs avec la phosphorylation de la beta-catenin (b-cat) Y667. Cette phosphorylation entraine l’expression de gènes twist (Drosophile) et notail (Danio rerio) nécessaire aux mouvements morphogénétiques. Les expériences réalisées consistent à bloquer les mouvements par l’intermédiaire de drogues (pour le poisson zèbre) ou de mutations (pour la Drosophile) et exercer une déformation mécanique sur les embryons. En l’absence de contraintes mécaniques la betacatenin n’est plus phosphorylée, de ce fait on elle n’est plus présente dans les noyaux ce qui entraine une perte d’expression des gènes twi ou notail. Avec une déformation mécanique alors que les mouvements sont bloqués nous arrivons à réactiver la phosphorylation de la βcat et ré induire l’expression des gènes. Ma contribution majeure pour ces expériences a été la mise en place d’un système magnétique permettant de mimer les mouvements de l’épibolie. (...)