Thèse soutenue

Le contrôle des émissions de protoxyde d'azote par le fonctionnement hydrique des sols

FR  |  
EN
Auteur / Autrice : Eva Rabot
Direction : Catherine HénaultIsabelle Cousin
Type : Thèse de doctorat
Discipline(s) : Science du sol
Date : Soutenance le 30/10/2014
Etablissement(s) : Orléans
Ecole(s) doctorale(s) : École doctorale Énergie, Matériaux, Sciences de la Terre et de l'Univers (Centre-Val de Loire ; 2012-....)
Partenaire(s) de recherche : Laboratoire : Institut National de Recherche Agronomique
Jury : Président / Présidente : Ary Bruand
Examinateurs / Examinatrices : Catherine Hénault, Isabelle Cousin, Ary Bruand, François Lafolie, Philippe Baveye, Matthieu Vale, Patricia Laville, Frédéric Ott
Rapporteur / Rapporteuse : François Lafolie, Philippe Baveye

Résumé

FR  |  
EN

Les sols et les activités agricoles qu’ils supportent, contribueraient à environ 2/3 des émissions globales de protoxyde d’azote (N2O), un puissant gaz à effet de serre. L’objectif de la thèse était la compréhension des déterminismes des émissions de N2O liés aux propriétés hydriques des sols. Des expérimentations de laboratoire permettant le contrôle hydrique fin d’échantillons de sol, en saturation et en désaturation, et la mesure des flux de N₂O ont été menées. Un couplage avec la tomographie par rayons-X a par ailleurs permis de caractériser la connectivité gazeuse. Enfin, une démarche de modélisation a permis de tester les hypothèses de fonctionnement émises, et de poursuivre la démarche de réflexion sur le lien entre les propriétés hydriques des sols et les émissions de N₂O. On a mis en évidence le rôle des propriétés hydriques des sols dans la variabilité des émissions de N₂O couramment observées, et la nécessité de distinguer des périodes de production/consommation de N₂O et de transport. On retiendra ainsi le fort caractère dynamique des émissions de N₂O, en lien avec la phase hydrique (saturation ou désaturation), le fonctionnement hydrodynamique des sols, le transport gazeux et la configuration spatiale de l’air et de l’eau dans le réseau de pores. Afin de décrire l’intensité et le timing des pics de N₂O, il est apparu pertinent d’observer les paramètres potentiel matriciel, coefficient de diffusion gazeuse et connectivité gazeuse, en plus de la teneur en eau. Ces observations ont des implications sur la modélisation des flux de N₂O. On recommande ainsi l’utilisation couplée de modules de transport hydrique, de transport gazeux et en solution de N₂O, en plus de modules de production microbiologique, pour prédire efficacement les émissions de N₂O.