Thèse soutenue

Contribution à la modélisation du comportement visco-hyper-élastique de mousses de polyuréthane : Validation expérimentale en quasi-statique

FR  |  
EN
Auteur / Autrice : Minglei Ju
Direction : Evelyne Aubry-Barottin
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 20/11/2014
Etablissement(s) : Mulhouse
Ecole(s) doctorale(s) : École doctorale pluridisciplinaire Jean-Henri Lambert, ED 494 (Mulhouse)
Partenaire(s) de recherche : Laboratoire : Laboratoire Modélisation Intelligence Processus Systèmes

Résumé

FR  |  
EN

La mousse flexible de polyuréthane est couramment utilisée dans nombreuses applications telles que acoustiques, thermiques et de bâtiment grâce à sa faible densité et à son pouvoir d’isolation thermique et acoustique. Elle est également utilisée dans les applications de confort pour les sièges tels que véhicule, train, avion etc. grâce sa faible raideur et à son pouvoir à absorber l’énergie de déformation. Pour optimiser le confort des systèmes d’assise, il est nécessaire de modéliser le siège et en particulier la partie flexible, c’est-à-dire la mousse de polyuréthane. Les objectifs principaux de cette thèse consistent à identifier puis à modéliser le comportement quasi-statique de la mousse de polyuréthane sous différentes conditions d’essais sous grandes déformations. Des essais de compression/décompressions unidirectionnels monocycle et multicycle à différentes vitesses de déformations ont été réalisés sur trois types de mousse de polyuréthane, afin de comprendre le comportement du matériau. Ces essais ont permis de déduire que les mousses de polyuréthanes sous grandes déformations présentent à la fois un comportement hyperélastique et un comportement viscoélastique. Ils ont également montrés que les mousses de polyuréthanes présentent un phénomène d’assouplissement appelé ‘effet de Mullins’ lors que les essais de compression/décompressions multicycle, c’est-à-dire que les contraintes dans 1er cycle sont moins faibles que les contraintes dans les cycles suivants pour une même déformation. Sur la base des résultats d’expérimentaux et afin de modéliser le comportement quasi-statique de la mousse de polyuréthanne, nous avons développé trois modèles visco-hyperélastiques qui se composent de deux éléments à savoir la partie modèles énergétiques hyperélastiques, utilisés généralement pour des matériaux à comportement caoutchoutique, et la partie modèle à mémoire entier qui tient compte de l’historique et permettant de décrire le comportement viscoélastique. Les paramètres des modèles ont été identifiés en utilisant la méthode d’identification et la méthode d’optimisation appropriée. Les résultats des modélisations du comportement mécanique de la mousse sur les essais monocycles et multicycles ont été comparés aux résultats expérimentaux, monteront à la fois une très bonne capacité à simuler le 1er cycle de charge/décharge, ainsi que les cycles suivant. Nos modèles ont prouvé leur capacité à modéliser l’effet de Mullins sur les mousses de polyuréthane souple. Ces modèles ont été validés sur les trois types de mousse et pour trois vitesses de sollicitation, permettent de conclure leurs efficacités et de leurs représentativités.