Thèse soutenue

Contribution à la modélisation physique du dosage des actinides par microanalyse électronique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Aurélien Moy
Direction : Claude Merlet
Type : Thèse de doctorat
Discipline(s) : Géosciences
Date : Soutenance le 26/09/2014
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement (Montpellier ; École Doctorale ; 2009-2015)
Partenaire(s) de recherche : Laboratoire : Géosciences (Montpellier) - Centre d'études nucléaires de la Vallée du Rhône
Jury : Président / Présidente : Jean-Louis Bodinier
Examinateurs / Examinatrices : Claude Merlet, Jean-Louis Bodinier, Philippe Jonnard, Francesc Salvat, Olivier Dugne, Stéphane Brémier
Rapporteurs / Rapporteuses : Philippe Jonnard, Francesc Salvat

Résumé

FR  |  
EN

L'analyse par microsonde électronique (EPMA) permet de quantifier, avec une grande précision, les concentrations élémentaires d'échantillons de compositions inconnues. Elle permet, par exemple, de quantifier les actinides présents dans les combustibles nucléaires neufs ou irradiés, d'aider à la gestion des déchets nucléaires ou encore de dater certaines roches. Malheureusement, ces analyses quantitatives ne sont pas toujours réalisables dû à l'indisponibilité des étalons de référence pour certains actinides. Afin de pallier cette difficulté, une méthode d'analyse dite « sans standard » peut-être employée au moyen d'étalons virtuels. Ces derniers sont obtenus à partir de formules empiriques ou à partir de calculs basés sur des modèles théoriques. Toutefois, ces calculs requièrent la connaissance de paramètres physiques généralement mal connus, comme c'est le cas pour les sections efficaces de production de rayons X. La connaissance précise de ces sections efficaces est requise dans de nombreuses applications telles que dans les codes de transport de particules et dans les simulations Monte-Carlo. Ces codes de calculs sont très utilisés en médecine et particulièrement en imagerie médicale et dans les traitements par faisceau d'électrons. Dans le domaine de l'astronomie, ces données sont utilisées pour effectuer des simulations servant à prédire les compositions des étoiles et des nuages galactiques ainsi que la formation des systèmes planétaires.Au cours de ce travail, les sections efficaces de production des raies L et M du plomb, du thorium et de l'uranium ont été mesurées par impact d'électrons sur des cibles minces autosupportées d'épaisseur variant de 0,2 à 8 nm. Les résultats expérimentaux ont été comparés avec les prédictions théoriques de sections efficaces d'ionisation calculées grâce à l'approximation de Born en ondes distordues (DWBA) et avec les prédictions de formules analytiques utilisées dans les applications pratiques. Les sections efficaces d'ionisation ont été converties en sections efficaces de productions de rayons X grâce aux paramètres de relaxation atomique extraits de la littérature. Les résultats théoriques du modèle DWBA sont en excellents accords avec les résultats expérimentaux. Ceci permet de confirmer les prédictions de ce modèle et de valider son utilisation pour le calcul de standards virtuels.Les prédictions de ce modèle ont été intégrées dans le code Monte-Carlo PENELOPE afin de calculer l'intensité de rayons X produite par des standards pur d'actinides. Les calculs ont été réalisés pour les éléments dont le numéro atomique est 89 ≤ Z ≤ 99 et pour des tensions d'accélération variant du seuil d'ionisation jusque 40 kV, par pas de 0,5 kV. Pour une utilisation pratique, les intensités calculées pour les raies L et M les plus intenses ont été regroupées dans une base de données.Les prédictions des standards virtuels ainsi obtenus ont été comparées avec des mesures effectuées sur des échantillons de composition connue (U, UO2, ThO2, ThF4, PuO2…) et avec les données acquises lors de précédentes campagnes de mesures. Le dosage des actinides à l'aide de ces standards virtuels a montré un bon accord avec les résultats attendus. Ceci confirme la fiabilité des standards virtuels développés et démontre que la quantification des actinides par microsonde électronique est réalisable sans standards d'actinides et avec un bon niveau de confiance.