Thèse soutenue

Évaluation et requêtage de données multisources : une approche guidée par la préférence et la qualité des données : application aux campagnes marketing B2B dans les bases de données de prospection

FR  |  
EN
Auteur / Autrice : Soumaya Ben Hassine
Direction : Jérôme DarmontJean-Hugues Chauchat
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 10/10/2014
Etablissement(s) : Lyon 2
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Entrepôts, Représentation et Ingénierie des Connaissances
Jury : Président / Présidente : Zoubida Kedad
Examinateurs / Examinatrices : Virginie Thion-Goasdoue, Sylvie Servigne
Rapporteurs / Rapporteuses : Pascal Poncelet

Résumé

FR  |  
EN

Avec l’avènement du traitement distribué et l’utilisation accrue des services web inter et intra organisationnels alimentée par la disponibilité des connexions réseaux à faibles coûts, les données multisources partagées ont de plus en plus envahi les systèmes d’informations. Ceci a induit, dans un premier temps, le changement de leurs architectures du centralisé au distribué en passant par le coopératif et le fédéré ; et dans un deuxième temps, une panoplie de problèmes d’exploitation allant du traitement des incohérences des données doubles à la synchronisation des données distribuées. C’est le cas des bases de prospection marketing où les données sont enrichies par des fichiers provenant de différents fournisseurs.Nous nous intéressons au cadre particulier de construction de fichiers de prospection pour la réalisation de campagnes marketing B-to-B, tâche traitée manuellement par les experts métier. Nous visons alors à modéliser le raisonnement de brokers humains, afin d’optimiser et d’automatiser la sélection du « plan fichier » à partir d’un ensemble de données d’enrichissement multisources. L’optimisation en question s’exprimera en termes de gain (coût, qualité) des données sélectionnées, le coût se limitant à l’unique considération du prix d’utilisation de ces données.Ce mémoire présente une triple contribution quant à la gestion des bases de données multisources. La première contribution concerne l’évaluation rigoureuse de la qualité des données multisources. La deuxième contribution porte sur la modélisation et l’agrégation préférentielle des critères d’évaluation qualité par l’intégrale de Choquet. La troisième contribution concerne BrokerACO, un prototype d’automatisation et d’optimisation du brokering multisources basé sur l’algorithme heuristique d’optimisation par les colonies de fourmis (ACO) et dont la Pareto-optimalité de la solution est assurée par l’utilisation de la fonction d’agrégation des préférences des utilisateurs définie dans la deuxième contribution. L’efficacité du prototype est montrée par l’analyse de campagnes marketing tests effectuées sur des données réelles de prospection.