Thèse soutenue

Mécanismes d’apprentissage développemental et intrinsèquement motivés en intelligence artificielle : étude des mécanismes d'intégration de l'espace environnemental

FR  |  
EN
Auteur / Autrice : Simon Gay
Direction : Alain MilleOlivier Georgeon
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 15/12/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'InfoRmatique en Images et Systèmes d'information (Ecully, Rhône ; 2003-....) - Traces, Web, Education, Adaptation, Knowledge
Jury : Président / Présidente : Pierre de Loor
Examinateurs / Examinatrices : Stéphane Doncieux
Rapporteur / Rapporteuse : Alain Dutech, Mehdi Khamassi

Résumé

FR  |  
EN

Cette thèse s'inscrit dans le cadre du projet IDEAL (Implementing DevelopmentAl Learning) financé par l'Agence Nationale de la Recherche (ANR). La capacité à percevoir, mémoriser et interpréter l'environnement qui nous entoure est une capacité vitale que l'on retrouve chez de nombreux êtres vivants. Cette capacité leur permet de générer des comportements adaptés à leur contexte, ou d'échapper à un prédateur sorti de leur champ de vision. L'objectif de cette thèse consiste à doter un agent artificiel de cette capacité. Nous proposons un modèle théorique permettant à un agent artificiel de générer des connaissances exploitables des éléments constituant son environnement et une structure reflétant l'espace. Ce modèle est basé sur la théorie de la contingence sensorimotrice, et implémente une forme de motivation intrinsèque. En effet, ce modèle débute avec un ensemble de structure indivisibles, appelées interactions, caractérisant les échanges entre l'agent et son environnement. L'apprentissage des connaissances est développemental et émerge de l'interaction entre l'agent et son environnement, sans qu'aucune intervention extérieure (récompense), ne soit nécessaire. Notre modèle propose des mécanismes permettant d'organiser et d'exploiter ces connaissances émergentes dans le but de générer des comportements. Nous proposons des implémentations de ce modèle pour démontrer l'émergence d'une connaissance à partir de l'interaction entre l'agent et son environnement, et les comportements qui émergent de cette connaissance