Thèse soutenue

Définition d'un modèle unifié pour la simulation physique adaptative avec changements topologiques

FR  |  
EN
Auteur / Autrice : Elsa Fléchon
Direction : Fabrice JailletFlorence Zara
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 09/12/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : LIRIS - Laboratoire d'Informatique en Image et Systèmes d'information (Rhône ; 2003-....) - Simulation, Analyse et Animation pour la Réalité Augmentée
Jury : Président / Présidente : Stéphane Cotin
Examinateurs / Examinatrices : Benjamin Gilles, Guillaume Damiand, Emmanuel Promayon
Rapporteurs / Rapporteuses : David Cazier, Philippe Meseure

Résumé

FR  |  
EN

Les travaux réalisés pendant mon doctorat répondent à la problématique de la simulation physique, en temps interactif, du comportement d'objets déformables soumis à des changements topologiques. Mes travaux ont abouti à la définition d'un nouveau modèle unifié couplant un modèle topologique complet et un modèle physique, pour la simulation physique d'objets déformables décomposés en éléments surfaciques comme volumiques, tout en réalisant pendant cette simulation des changements topologiques comme la découpe ou la subdivision locale d'un élément du maillage. Cette dernière opération a permis de proposer une méthode adaptative où les éléments du maillage sont raffinés selon un critère géométrique au cours de la simulation. Nous avons fait le choix des cartes combinatoires et plus particulièrement celui des complexes cellulaires linéaires, comme modèle topologique de notre modèle unifié. Ils ont l'avantage d'être génériques par rapport à la dimension de l'objet représenté mais également par rapport à la topologie des cellules en lesquelles l'objet est décomposé. Le système masses-ressort a, quant à lui, été choisi comme modèle physique de notre modèle unifié. L'avantage de ce dernier réside dans la simplicité de ses équations, son implémentation intuitive, son interactivité et sa facilité à gérer les changements topologiques. Enfin, la définition d'un modèle unifié nous a permis de proposer un modèle évitant la redondance d'informations et facilitant la mise à jour de ces dernières suite à des changements topologiques