Thèse soutenue

Étude de sorption, de transfert de matière et chaleur pendant la polymérisation de l'éthylène en phase gaz dans un procédé en mode condensée

FR  |  
EN
Auteur / Autrice : Arash Alizadeh
Direction : Christophe BoissonTimothy McKennaMartin Guay
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 23/06/2014
Etablissement(s) : Lyon 1 en cotutelle avec Queen's university (Kingston, Canada)
Ecole(s) doctorale(s) : Chimie (Chimie, Procédés, Environnement)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Chimie OrganoMétallique de Surface (1994-2006)
Jury : Président / Présidente : Philippe Cassagnau
Examinateurs / Examinatrices : Timothy McKenna
Rapporteur / Rapporteuse : Michael Bartke, Joao Vianei Soares

Résumé

FR  |  
EN

La polymérisation de l'éthylène en phase gaz en présence d'un système catalytique supporté en réacteurs à lit fluidisés reste le procédé le plus utilisé pour la production de polyéthylène à basse densité linéaire. De plus, dans le cas du polyéthylène à haute densité, celui-ci représente également une part non négligeable des plants de production à travers le monde. Le procédé en phase gaz offre de nombreux avantages dont un coût d'exploitations inférieures et une flexibilité supérieure en termes de production des différents types de polymères comparé aux autres procédés conventionnels. Cependant, au regard de la nature exothermique de la réaction de polymérisation, la vitesse de la production du polymère dans ces réacteurs est limitée par la vitesse à laquelle la chaleur produite par la réaction peut être évacuée. Si le réacteur ne permet pas l'évacuation de cette chaleur, l'augmentation de la vitesse de production résulterait en une croissance dramatique de la température au sein du réacteur et, par conséquent, à la fusion et l'agglomération du polymère, et finalement à l'arrêt du réacteur. Dans ce cas, dans le but d'avoir une vitesse de production plus importante, il est possible d'utiliser le réacteur susnommé en tant que mode d'opération condensé. Dans le cas de ce mode d'opération, le flux d'alimentation de la phase gaz du réacteur contient non seulement de l'éthylène, de l'azote, de l'hydrogène, et éventuellement un comonomère, mais également un agent condensant inerte (ACI) tels que le pentane ou l'hexane. Dans cette configuration, le flux d'alimentation est en partie liquéfié dans un échangeur de chaleur externe en le refroidissant sous le point de rosée du gaz. Par vaporisation de la phase liquide dans le réacteur, une quantité plus importante de chaleur peut être retirée de l'environnement du réacteur grâce à la chaleur latente associée à la vaporisation. Cela permet d'obtenir un rendement plus élevé de l'espace pour ce réacteur et par conséquent une vitesse de production supérieure