Contributions à la théorie des espaces de fonctions : singularités et relèvements
Auteur / Autrice : | Ioana Molnar |
Direction : | Petru Mironescu |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 24/06/2014 |
Etablissement(s) : | Lyon 1 |
Ecole(s) doctorale(s) : | École doctorale InfoMaths (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Camille Jordan (Rhône ; 2005-....) |
Jury : | Président / Présidente : Emmanuel Russ |
Examinateurs / Examinatrices : Petru Mironescu, G. Dinca, Johannes Kellendonk | |
Rapporteurs / Rapporteuses : Jean Van Schaftingen, Radu Ignat |
Mots clés
Résumé
Dans cette thèse nous étudions quelques aspects des certains espaces de fonctions. D’une part nous nous intéressons aux singularités des applications W^{1,n} à valeurs dans la sphère unité S^n, et d’autre part, aux relèvements des applications W^{s,p} à valeurs dans le cercle S^1.La première partie concerne le problème de minimisation d’une énergie de type Dirichlet à poids. Les fonctions admissibles sont les fonctions continues hors d’un ensemble singulier donné prescrit par le bord d’un courant rectifiable. Nous obtenons la formule exacte, résultat qui améliore celui d’Alberto, Baldi et Orlando (2003). Il s’agit aussi d’une généralisation des résultats obtenus précédemment par Brezis, Coron, Lieb (1986), Almgren, Browder, Lieb (1988).La deuxième partie porte sur le meilleur contrôle des phases des applications uni-modulaires et elle se repose sur les travaux de Bourgain, Brezis, Mironescu (2000, 2002). A l’aide de quelques méthodes connues et des méthodes nouvelles, nous étudions des estimations optimales des semi-normes W^{s,p} des relèvements selon les différentes valeurs de s et de p. Nous obtenons aussi une nouvelle caractérisation de W^{s,p} pour s<1 en termes de semi-norme dyadique