Thèse soutenue

Contributions à la théorie des espaces de fonctions : singularités et relèvements

FR  |  
EN
Auteur / Autrice : Ioana Molnar
Direction : Petru Mironescu
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 24/06/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Emmanuel Russ
Examinateurs / Examinatrices : Petru Mironescu, G. Dinca, Johannes Kellendonk
Rapporteurs / Rapporteuses : Jean Van Schaftingen, Radu Ignat

Résumé

FR  |  
EN

Dans cette thèse nous étudions quelques aspects des certains espaces de fonctions. D’une part nous nous intéressons aux singularités des applications W^{1,n} à valeurs dans la sphère unité S^n, et d’autre part, aux relèvements des applications W^{s,p} à valeurs dans le cercle S^1.La première partie concerne le problème de minimisation d’une énergie de type Dirichlet à poids. Les fonctions admissibles sont les fonctions continues hors d’un ensemble singulier donné prescrit par le bord d’un courant rectifiable. Nous obtenons la formule exacte, résultat qui améliore celui d’Alberto, Baldi et Orlando (2003). Il s’agit aussi d’une généralisation des résultats obtenus précédemment par Brezis, Coron, Lieb (1986), Almgren, Browder, Lieb (1988).La deuxième partie porte sur le meilleur contrôle des phases des applications uni-modulaires et elle se repose sur les travaux de Bourgain, Brezis, Mironescu (2000, 2002). A l’aide de quelques méthodes connues et des méthodes nouvelles, nous étudions des estimations optimales des semi-normes W^{s,p} des relèvements selon les différentes valeurs de s et de p. Nous obtenons aussi une nouvelle caractérisation de W^{s,p} pour s<1 en termes de semi-norme dyadique