Thèse soutenue

Étude et modélisation du comportement de la phase dispersée dans une colonne pulsée : application à un procédé de précipitation oxalique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Abdenour Amokrane
Direction : François Puel
Type : Thèse de doctorat
Discipline(s) : Génie des procédés
Date : Soutenance le 14/05/2014
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École Doctorale de Chimie (Lyon ; 2004-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Automatique et de Génie des Procédés (Lyon)
Jury : Président / Présidente : Michel Lance
Examinateurs / Examinatrices : Sophie Charton, Hervé Muhr
Rapporteurs / Rapporteuses : Frédéric Gruy, Olivier Lebaigue

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La thèse porte sur l'étude et la modélisation d'une colonne pulsée utilisée dans les opérations d'extraction liquide-liquide dans l'industrie nucléaire, et qui est par ailleurs également utilisée pour des opérations de précipitation oxalique en continu. La modélisation du comportement de la phase dispersée dans la colonne est entreprise dans ce manuscrit. Tout d'abord, nous avons commencé par la modélisation du champ moyen et de la turbulence de la phase continue qui est responsable du transport et de la rupture et coalescence de la phase dispersée. Le modèle développé, validé sur des mesures PIV, prédit d'une manière très satisfaisante la turbulence. Une modélisation des temps de séjour (DTS) des gouttes par une approche lagrangienne est ensuite entreprise. Cette modélisation est validée sur des mesures de DTS prises par une technique d'ombroscopie. Les résultats de modélisation sont en très bon accord avec les mesures expérimentales. Pour modéliser les distributions de tailles des gouttes (DTG) dans la colonne, nous avons utilisé les équations de bilan de population (PBE) que nous avons couplées avec le modèle de mécanique des fluides numérique (CFD). Un réacteur parfaitement agité (RPA) équipé d'une sonde optique est utilisé, dans un premier temps, pour acquérir les DTG relatives à notre système liquide-liquide. Par le biais d'une modélisation 0D dans le RPA basée sur la résolution du problème inverse, nous avons pu déterminer les noyaux de rupture et de coalescence adaptés à notre système pour les utiliser dans la PBE. Les noyaux de rupture et de coalescence ainsi identifiés ont ensuite été utilisés pour modéliser les DTG dans la colonne pulsée par un modèle couplé CFD-PBE basé sur la méthode QMOM. Enfin, une validation du modèle couplé CFD-PBE est réalisée sur des mesures de DTG dans la colonne pulsée. Les résultats obtenus reproduisent parfaitement les mesures expérimentales aussi bien d'un point de vue qualitatif que quantitatif. Le modèle validé est ensuite utilisé dans le cadre d'une étude paramétrique qui a permis de donner accès à un certain nombre d'informations utiles sur le fonctionnement du procédé